

Steel Cable Carriers. Robust. Heat resistant. Long service life.

Energy needs guidance.

Pioneering innovation makes it possible.

KABELSCHLEPP invented the steel cable carriers more than 50 years ago. A world market has developed for our idea – and the inventor has become one of the companies which gives new impulses to the market world wide by means of innovative solutions.

The original from the inventor - more than 50 years of experience

Our steel cable carriers are impressive due to functionality, long service life, fitting accuracy and variety. Benefit from our decades of experience and innovation strength. Our service includes all facets of constructive advice, technical design up to the delivery of complete solutions.

KABELSCHLEPP – global player from Germany

13 subsidiary companies, representations in 40 countries and an unchallenged position as one of the technology leaders make us successful globally. Our global sales network ensures not only fast delivery, but also that we are always close to you and always reachable.

 KABELSCHLEPP steel cable carrier on a plano-milling machine, 1955

Steel cable carrier on a scissored coil lift

The group of companies' headquarters in Siegen. This is where worldwide experience and know-how come together.

Service that you can rely on

Our service team takes over the planning and execution of the assembly of cable carrier systems even with difficult assembly conditions.

- complete mounting with a guide channel
- uncoiling for long travel lengths
- assembly at significant heights (e. g. crane systems)

The specialists of our service center provide you with the support that you need. You will see: With KABELSCHLEPP, you make a decision in favour not only of a cable carrier, but of a totally harmonised system.

KABELSCHLEPP Service Center Hünsborn.

TOTALTRAX - everything from a single source

From our expertise in the area of cable carriers, you can also benefit in respect of other related things: Our LIFE-LINEs are highly flexible cables that satisfy particularly stringent quality requirements.

And our TOTALTRAX system goes one step further: We supply you with complete cable and hose carrier systems, including the chain, cables, plugs and connectors, all ready-to-install. The complete cable carrier system will be supplied to you "just-in-time" and ready to install.

 Complete TOTALTRAX cable and hose carrier system with chain, cables, plugs and connectors, pre-mounted on a shipping crate.

Table of abbreviations on the back side, please open up.

Do stop by our page on the internet: www.kabelschlepp.de

Cut down your construction times: 2D-/3D-CAD-data of our cable carrier systems.

Adapted to your requirements you can find our 2D-/3D-CAD-data in the component libraries of CADENAS and TRACEPARTS.

Further information can be found on page 53.

KABELSCHLEPP and EPLAN: LIFE-LINE cable database for EPLAN.

Simplify your daily work with EPLAN.

- easy cable selection by construction
- automatic addition of core number, cross-section and core colour
- complete data for parts lists and other evaluations

Further information can be found on page 53.

General abbreviations

ат	=	Distance from the inside edge of the end piece/ end divider to the centre of the first/last divider
a _x	=	Centre-to-centre spacing of dividers
Bef	=	Width of the cable carrier including glide shoes
Bi	=	Cavity width inside the carrier cross-section
Bk	=	Width of cable carrier
Bst	=	Width of hole stays
BΑ	=	Width of the support tray
Βκα		Width of the guide channel
b1	=	Clearance inside width of the support tray
С	=	Distance between the holes (for hole stays)
d	=	Cable or hose diameter
D	=	Hole diameter in hole stay
Н	=	Connection mounting height
Hz	=	Installation height (required clear height)
hĄ	=	Height of the support tray
hG	=	Chain link height
hi	=	Clearance height inside the carrier cross-section
hka	=	Height of the guide channel
h1	=	Outlet height of the upper trough in the guide
		channel
KR	=	Bending radius of the cable carrier
La	=	Length of the support tray
LB	=	Length of the loop at the bend
Lf	=	Unsupported length
L _k	=	Length of the cable carrier (without connection)
Lka	=	Length of the guide channel
Ls	=	Maximum length of the travel length
Lv	=	Longitudinal offsets between cable carrier fixed point and centre of the travel length
Lz	=	Channel allowance dimension
1	=	Connection dimensions
nŢ	=	Number of dividers per cross-section
qef	=	Total weight of the carrier per metre q_{EF} = Intrinsic carrier weight q_k + additional load q_z
qk	=	Intrinsic carrier weight per metre
qz	=	Additional load/m of cable carrier
RKR	=	Reverse bending radius
S	=	Sheet metal thickness
SŢ	=	Divider thickness
STA	=	Divider thickness for mounting frame stay
t	=	Pitch
ÜB	=	Loop overhang (Depot)
Х	=	Distance between the fixed points (in an opposing arrangement)
Z	=	Pre-tension on the cable carrier

Contents

Copyright

Illustrations and text in this catalog are purely informative and, in part, only exemplary. They do not represent any quality guarantee and do not assure suitability for a particular application. This catalog is subject to technical and optical changes. Orders to be placed in the future are subject to the legally agreed quality of the relevant product, or otherwise the quality of each product as it was at the time of the signing of the contract.

All rights of this catalog are reserved, including text and illustrations, as well as brand names and corporate logos/trademarks used, in particular the rights of photocopying, distribution, translation or any other form of editing as well as the right of public reproduction.

No part of this catalog, including brand names and corporate logos/trademarks may be reproduced, processed, photocopied or distributed in any form or by any means, especially optical, photo-mechanical, paper-based or electronic, without prior written permission of KABELSCHLEPP GmbH.

Except hereof is the legally authorized use of photo-copying for merely private purposes (paragraph 53 German copyright law).

Our current terms and conditions of sales and delivery can be found at www.kabelschlepp.de

© 2008 · KABELSCHLEPP GmbH, D-57074 Siegen

6

the power to innovate

CONDUFLEX

MOBIFLEX Tube

Designer cable carrier

Application examples

Steel Cable Carriers/ Design guidelines Information for the design of steel cable carriers	pageSteel cable carriers8Guideline for fast product selection14Design guidelines21Laying guidelines for cables46Material properties50
LS/LSX Series	page Type LS/LSX 1050 57

S/SX Series	Type S/SX 0650	page 73
Extremely robust steel cable carriers	Type S/SX 0950	85
,	Type S/SX 1250	97
	Type S/SX 1800	115
	Type S/SX 2500	125
	Type S/SX 3200	131
	Type S/SX 5000/6000/7000	137
CONDUFI FX / MOBIFI FX		page

COND	UFLEX /	/ MOBIFLEX
------	---------	------------

Light, economically priced steel cable carriers

Closed tubes

LIFE-LINE Safety Cables	LIFE-LINE	page
Cables for cable carriers	Safety Cables TOTALTRAX	152
TOTALTRAX Complete Systems	Complete Systems	156

Accessories		page
The extensive range of accessories provides	Support trays/Guide channels Support rollers	160 164
the appropriate solution for every application.	Steel band covers	166
	Strain relief devices	167
	Fax question form	174
	Information request	175

Application examples

Steel cable carriers in use in various applications

page

177

144

148

STEEL-LINE – Steel Cable Carriers.

Solutions for extreme applications.

Robust construction for strong mechanical loads

Due to their design and the use of high quality materials, our steel carriers can cope with the harshest loads.

Steel carriers also guarantee reliable operation in the case of serious contamination and external mechanical influences – expensive downtimes are avoided.

Examples of application areas:

steel works, foundries, drilling equipment, coal excavators, construction equipment, oil rigs, lifting vehicles, telescopic lifting equipment

High additional loads and large unsupported lengths

The high strength of the steel material makes possible significantly larger unsupported lengths for the same dimensions and additional loads than for plastic carriers.

Examples of application areas: plant construction, tool changers, telescopic lifting equipment

small dimensions
 inner dimensions:
 31 x 65 mm

system weight: up to 30 kg/m unsupported chain length: up to 3 m

large dimensions
 inner dimensions:
 370 x 1800 mm

system weight: up to 600 kg/m

unsupported chain length: more than 12 m

the power to innovate

Heat resistance

- constant temperature loads up to 600 °C* (depending on stay and chain band design) are possible
- short-term up to 1000 °C* (SX version)
- hot chips, hot cast parts, forgings and molded parts
- high radiant heat
- * maximum values, application dependent

Examples of application areas:

foundries, steel works, rolling mills, industrial furnaces

Extreme, particular environmental influences

- sea water resistant
- radiation resistant
- UV resistant
- chemical-resistant

Examples of application areas:

port facilities, offshore use, nuclear power stations, any outdoor use, waste disposal companies

LS/LSX Series.

Cost-effective steel chains with light design.

LS/LSX series – light, economically priced steel chains.

The chains are very light and yet very stable due to the weight-optimized link plate design. The unsupported length for the LS series is significantly higher as compare with plastic chains of the same size.

- economically priced, light steel chains
- improved dynamic characteristic values due to weight-optimized design
- large unsupported lengths for small to medium additional loads
- available in 1 mm section width
- cover with steel band for protection of the cables available on request

LS/LSX steel chains can be found starting on page 54.

Design of steel cable carriers - page 22.

TIP: Design service

Our system consultants would be happy to carry out the design of your cable and hose carrier system for you – free of charge, competently and quickly. Please contact us. **Light sidebands without additional bolts** Special coating or stainless steel

Optional: central bolt and locking ring For applications involving large loads

Optional C-Rail for strain relief elements fixed in the connection

S/SX Series.

Extremely robust steel chains in 9 different types.

S/SX series –

extremely robust and stable steel chains for heavy mechanical loads and harsh environmental conditions.

Steel cable carriers proven over many years with extremely stable chain link plates and a link design with multiple stop system and special bolts. Large unsupported lengths and high additional loads are possible due to the extremely stable design.

- extremely robust, stable steel chains for heavy mechanical loads and harsh environmental conditions
- very large unsupported lengths also for large additional loads
- available in 1 mm section width
- different types with different dimensions are available
- covers with aluminium cover systems and steel band are possible for protecting the cables

S/SX steel chains can be found starting on page 70.

Design of steel cable carriers - page 22.

TIP: Design service

Our system consultants would be happy to carry out the design of your cable and hose carrier system for you – free of charge, competently and quickly. Please contact us. Also available as covered variants with cover system or steel band covering.

Cover systems – RMD stay variant.

Robust cover also for heavy mechanical loads.

See RMD stay variant within the types.

Steel band covers – economically priced, light cover variant for flying sparks and small chips. See the Accessories chapter, page 159.

CONDUFLEX.

Closed designer cable carrier.

CONDUFLEX Designer TUBES

- Enclosed cable carriers in a sophisticated design
- Attractive appearance owing to high-grade steel brackets and fiberglass reinforced polyamide frame
- Optimized protection for cables and hoses

CONDUFLEX Designer TUBES can be found starting on page 143.

MOBIFLEX.

Flexible metal helical tube.

MOBIFLEX TUBES

- Enclosed cable carriers with flexible metal helical tubes
- Unsupported thanks to the inserted, pre-tensioned steel band. Ideal in case of hot metal chips.

MOBIFLEX TUBES can be found starting on page 148.

TIP: Design service

Our system consultants would be happy to carry out the design of your cable and hose carrier system for you – free of charge, competently and quickly. Please contact us.

TOTALTRAX.

Complete systems.

TOTALTRAX – completely pre-assembled cable carrier systems

One supplier and one contact person for the complete system. We take over the planning and project planning and the procurement of all components for your cable carrier system.

- Consulting
- Electrical cables
- Project planning
- Connectors
- Design
 - Complete delivery
- Retaining plates
 Complete assembly of all components

TOTALTRAX Complete systems can be found starting on page 156.

LIFE-LINE.

Highly flexible electrical cables.

LIFE-LINE Safety Cables – highly flexible electrical cables

The successful KABELSCHLEPP LIFE-LINE range is constantly expanded and optimized as an innovative standard range of modern cable carrier cables specially for use in cable carriers.

LIFE-LINE Safety Cables – an overview can be found starting on page 151.

Or simply request our catalogue "LIFE-LINE Safety Cables".

Guideline for fast product selection.

Product Symbol	Product Symbol Product		Туре	Clearance height ^{A)} hi in mm	Carrier widtl	A) B _k in mm Bend radii i		lii in mm =-=-₽
				╨────╨╻	from	to	min.	max.
in the second								
	ers ds							
	carri ban taalf	ינענו						
	able hain of s	^ 	LS/LSX 1050	58	100	600	105	430
011 50	Light cable carriers with chain bands	ומחע						
	Lig > .							
0								
	B)		S/SX 0650	31	70	500	75	400
18 B 1	Cable carriers with chain bands made of steel ^{B)}		S/SX 0950	46	125	600	125	600
			S/SX 1250	72	130	800	145	1000
Mall Bard			S/SX 1800	108	180	1000	265	1405
			S/SX 2500	183	250	1200	365	1395
and a state			S/SX 3200	220	250	1500	470	1785
10.10			S/SX 5000	150	150	1000	500	1200
1 in			S/SX 6000	240	200	1200	700	1500
	>		S/SX 7000	370	300	1500	1100	2400
			CF 055	25	-	45	65	150
	astic	EX	CF 060	40	-	36	-	100
	nergy Conduits I or steel and plastic	CONDUFLEX	CF 085	38	-	73	100	250
	iergy Conduits I or steel and p	OND	CF 115	52	-	102	140	300
	y Co stee	0	CF 120	70	-	100	155	200
00	inerg el or		CF 175	72	-	162	185	350
	Flexible Er made from stee		MF 030	24	-	26	-	80
	ilexil from	YEX:	MF 050	44	-	45	75	200
	ade	MOBIFLEX	MF 080	78	-	80	100	200
	Ê	Σ	MF 110	108	-	109	150	300
			MF 170	167	-	170	190	365

Reference:

- Standard
- Customized standard products
- Special order as per customer specifications

Stay variants / stay designs:

(Detailed information starting on page 24)

RS – frame stay, narrow version

Variant RS 1 – with quick-release aluminium stays on the outside or inside Variant RS 2 – with bolted aluminium stays

RV – frame stay, reinforced version

Aluminium stays on the inside and outside bolted to the chain bands – high stiffness

please open up

1								
Travel length ^{D)} L_S in m	Dynamics for unsup	ported arrangement	Variants of car	rrier/hose cross-s	section (Stay var	iants – see page	24)	
	Travel speed ^{C)}	Travel acceleration	Closed	Frame stay	Frame stay	Frame stay	Frame stay	
Unsupported arrangement	v _{max} in m/s	a _{max} in m/s ²	frame	RS 2	RS 1	RV	RM	
10.0	2.5	10.0						
6.0	2.5	5.0						
9.0	2.5	5.0						
12.0	2.5	5.0						
18.0	2.0	3.0						
24.0	2.0	3.0						
25.0	2.0	2.5						
12.0	2.0	3.0						
18.0	1.5	2.0						
25.0	1.0	1.0						
3.0	10.0	20.0						
3.5	10.0	20.0						
4.5	8.0	18.0						
5.0	8.0	16.0						
5.5	6.0	15.0						
6.0	6.0	12.0						
3.0	10.0	20.0						
3.0	10.0	20.0						
4.0	10.0	18.0						
4.0	6.0	15.0						
5.0	6.0	12.0						

RM – frame stay, solid version

Aluminium stays bolted on both sides – greatest stability, for maximum stay widths

RMR – roller stay system

Aluminium stays bolted on both sides – with plastic roller system

RMD – frame stay, cover system – covered cable carrier Aluminium cover bolted on both the inside and outside to the chain bands

RMA – mounting frame stay Stay variant for large cable diameter

Frame stay RMA	Frame stay RMR	Tube stay RR	Hole stay LG	Frame stay RMD	Cover with spring steel strip possible	Technical data see page	Туре
					on request	57	LS/LSX 1050
						73	S/SX 0650
						85	S/SX 0950
						97	S/SX 1250
						115	S/SX 1800
		•				125	S/SX 2500
		•				131	S/SX 3200
		•	•			137	S/SX 5000
		•	•			137	S/SX 6000
		•	•			137	S/SX 7000
					E)	144	CF 055
						144	CF 060
					E)	144	CF 085
					E)	144	CF 115
						144	CF 120
					E)	144	CF 175
						148	MF 030
						148	MF 050
						148	MF 080
						148	MF 110
						148	MF 170

R – frame stay, tube version

- teel axles as connecting profiles vith rotating metal tubes
- G hole stay split design
- Aluminium stays order-specific production naximum degree of operating reliability
- A) dependent on the stay variant
- B) multi-band chains for larger widths possible
- ^{C)} values for S and LS versions; values for SX / LSX versions reduced by 0.5 m/s
- D) values for S and LS versions;
 See load diagram of the respective type for values
- for SX versions E) cover with protective straps possible

Plastic cable carriers – the other cable carri

BASIC-LINE Solid plastic cables carriers with fixed chain widths

- economically priced for standard applications
- many types available immediately ex-stock world wide

MONO Series

- single unit chain links with the option of either fixed or openable brackets
- simple and quick assembly
- end connector with integrated strain relief
- inside heights 10 42 mm
- inside widths 6 169 mm

BASIC

UNIFLEX Series

- single unit chain links with the option of either fixed or openable brackets
- can be opened inwards or outwards according to preference
- robust, double stroke system for long unsupported length
- particularly high torsional rigidity
- open, half-covered and completely covered designs
- inside heights 17.5 44 mm
- inside widths 15 250 mm

BASIC-LINE^{PLUS} Solid plastic cables carriers with fixed chain widths

- fast laying by simply pressing in the cables
- no hinges, no hinge wear
- fixed widths / fixed chamber widths

PROTUM

- very long service life no hinges and thus no hinge wear
- small, light cable carrier for unsupported applications
- very good ratio of useful space to outer dimensions
- Iow-vibration and quiet operation
- optimal for short travel lengths and high travel speeds
- inside heights 15 25 mm
- inside widths 15 45 mm

Protum Office: Flexible cable carrier for office and workshop furniture

PRO*file*[®]

- optimal for short travel lengths and high travel speeds
- Iow-vibration and quiet operation
- very long service life
- tested over several million movement cycles
- clean-room compatibility due to low-wear design and the associated minimal particle emission

17

er range

VARIO-LINE Solid plastic cables carriers with variable chain widths

- can be opened on both sides
- available in variable widths
- aluminium or plastic stays
- light, solid or link-free sidebands depending on the application

K Series

- robust, simple design, even for large additional loads
- solid plastic or in combination with aluminium stays
- enclosed stop system not sensitive to dirt / contamination
- available for aluminium stays in 1 mm section widths
- glide discs for applications where the carrier is installed on its side
- inside heights 38 58 mm
- inside widths 68 561 mm

VARIO-LINE

18

MASTER Series

- light-weight, low-noise cable carriers
- customized bend radii are available
- standard widths available ex-stock; individual widths in 1 mm sections on request
- Iow intrinsic weight
- aluminium stays
- inside heights 33 80 mm
- inside widths 50 800 mm

M Series

- the robust all-rounder, various separation options, large selection of stay systems
- ideal for fast, gliding applications
- highly wear-resistant, replaceable glide shoes available – resulting in minimal wear at high speeds and multiple shift operation, sliding in the guide channel
- inside heights 19 87 mm
- inside widths 24 800 mm

XL Series

- large dimensions for cables with large cable diameter
- for unsupported and gliding applications
- highly wear-resistant, replaceable glide shoes available –
- resulting in minimal wear at high speeds, sliding in the guide channel
- available in 1 mm width sections
- aluminium stays
- inside height 108 mm
- inside widths 200 1000 mm

TKR 0200

- extremely low-noise and low-vibration cable carrier
- long service life
- ideal for highly dynamic applications
- high side stability

VARIO-LINE

- suitable for clean rooms
- can be quickly and easily opened on the inside and outside
- the modular design makes it easy to shorten and lengthen
- inside height 28 mm
- inside widths 40 100 mm

QUANTUM

- for extremely high accelerations (bis 300 m/s²) and operational speeds up to 40 m/s
- for additional 3D-movements at the driver connection
- modular construction with extruded sidebands made of plastic, with stays made of aluminium or plastic
- many separation options for the cables
- available in 1 mm section widths (for aluminium stays)
- can be opened quickly on both sides
- inside heights 28 72 mm
- inside widths 28 600 mm

3D-LINE Cable carrier for 3D movements

ROBOTRAX

- for three-dimensional movements
- open design
 - fast cable laying by simple pressing in of the cables no threading through is necessary
 - simple check of all cables
- can be deployed on robots for swiveling and rotational movements: the same system for robot feet and arms
- optimal for the long service life of the cables:
 the minimum bend radius can be maintained
 - the cables are separated cleanly in three chambers
- special plastic for long service life
- 5 installation sizes with external diameters of 40 100 mm

er for 3D movement

3D-LINE

RS

RS RV RV RV RV

> 8 9

 $L_{H}=KR\times\pi+4\times1$ Us = KR + hs/2 + 2 x t Ham = 2 x KR + 1.5 x ha

Frame stay-profile #5818

Bi = BSt

-21

31

Subject to change.

Divider system TS1 with continuous hight division Aluminium-Profile 11x4 #5803

20

Steel Cable Carriers

Design Guidelines

	page
Carrier construction – Design of steel cable carriers – Internal subdivision of the carrier cross section,	22
cable guidance/divider systems	23
Stay variants	24
Design of the cable carrier	
– Inner dimensions, bend radius	26
– Chain length, support	27
 Chain cover, connection mounting height, 	
pre-tension	28
 Connection variants 	29
Overview of installation variants	30
Laying guidelines for cables and hoses	45
Strain relief of cables and hoses	48
Long service life of the cables	49
Material specifications of cable carriers	50
Environmental conditions	52

Carrier construction.

Design of steel cable carriers.

KABELSCHLEPP cable carriers made of steel consist of two or more parallel running chain bands made of high quality, specially coated, galvanized or rust and acid resistant steel. The chain bands are connected using variable width stays and this forms the cable space.

LS/LSX steel chains can be found starting on page 54.

S/SX steel chains can be found starting on page 70.

Internal subdivision of the carrier cross section.

Dividers made of plastic or steel and different height subdivisions make subdivision of the carrier cross section possible. In this way, the laid cables are separated and twisting the cables with each other is prevented. See also page 45.

Cable routing for hole stays

Stay variant LG

With hole stays, the number and position of the cables in the cross section are taken into account exactly as regards the shape. These can be routed in the neutral bending zone. Benefits:

stable construction

longer service life of the cables due to low relative movement of the cables for the stay

Divider systems for frame stays

Divider system TS 0

Vertical separations with dividers (1)

Divider system TS 2

Divider system TS 1

Vertical separations with dividers (1) Partial horizontal height subdivisions across the entire inside width (2)

Divider system TS 3

Vertical separations with dividers (1) Horizontal height separations with partitions made of plastic

or aluminium (2). These can also be installed at a later date or modified by changing the partitions.

Partition made of aluminium with plastic adapters. Available in 1 mm width sections.

Vertical separations with dividers (1) Horizontal height separators made of aluminium. Available in 1 mm width sections (2)

Divider systems TS 4 and TS 5 (not illustrated)

Divider system TS 4: Half-dividers and continuous height subdivision Divider system TS 5: Hole stay inserts made of plastic - split design

Stay variants.

The appropriate solution for every application.

Stay variant RS 2 – with bolted stays

- frame stay RS made of aluminium standard design
- for lightweight to medium loads
- available for the types: LS/LSX 1050, S/SX 0650, 0950 and 1250
- Standard stay arrangement: on every 2nd chain link.
 Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Stay variant RS 1 – with a detachable stay

- frame stay RS made of aluminium standard design
- for lightweight to medium loads
- available for the types: S/SX 0650, 0950 and 1250
- Standard opening options: Outside: The cable carrier can be opened quickly and easily simply by rotating the stays through 90°. Inside: Screwed stays
- Also optionally available with stays bolted on the inside and outside which can be opened by turning. Please state when ordering.
- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.

Stay variant RV – frame stay, reinforced design

- frame stay RV made of aluminium reinforced design
- for medium to heavy loads and for large chain width
- available for the types: LS/LSX 1050 and S/SX 1250

- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Stay variant RM – frame stay, solid design

- frame stay RM made of aluminium solid design
- for heavy loads maximum chain widths possible
- available for the types:
 S/SX 0950, 1250, 1800 and 2500
- Standard stay arrangement: on every 2nd chain link.
 Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Stay variant RMA – mounting frame stay

- for very large cable diameters such as with air hoses
- cables with diameters greater than the clearance height of the chain links can be routed
- installed on the inside or outside in the bend radius according to preference

gentle cable support due to rotating plastic tubes ideal when using media hoses with "soft" sheaths

stay profile made of aluminium - rollers made of

 available for the types: LS/LSX 1050, S/SX 0650 and 1250

available for the types:

S/SX 0950 and 1250

- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Stay variant RMR – frame stay with plastic roller system

- dividers in roller version
 - Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
 - bolted stays for maximum stability

plastic

Stay variant RR – frame stay, tube design

- ideal when using media hoses with "soft" sheaths
- gentle cable support due to rotating metal tubesavailable for the types:
- LS/LSX 1050, S/SX 0650, 0950, 1250 and 1800 possible materials of the axles, tubes and dividers:
 - axles, galvanized steel with plastic dividers
 axles and dividers made of galvanized steel
 - axles and dividers made of stainless steel ER 1, ER 1S
- Standard stay arrangement: on every 2nd chain link.
 Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Stay variant LG – hole stay made of aluminium, split design

- optimum cable guidance in the neutral bending line is possible
- drilling pattern individually adapted to the application
- available for the types: LS/LSX 1050, S/SX 0650, 0950, 1250, 1800, 2500, 3200, 5000, 6000 and 7000
- high stability due to solid construction

Examples of some hole patterns:

Split hole stay with individual holes

Split hole stay with horizontal and vertical elongated holes¹⁾

- split design as standard for easy laying of the cables
 Standard stay arrangement: on every 2nd chain link.
 Stays can be fitted on every chain link, please specify when placing your order.
 - bolted stays for maximum stability
 also available not split

Split hole stay with offset elongated hole

Split hole stay with rectangular elongated hole¹⁾

 with an off-center arrangement of the holes, the cables are subject to a relative movement when the carrier is in motion.

Stay variant RMD – covered cable carrier, STEEL-TUBE

- aluminium cover system for protecting the cables and hoses
- for applications where chips or severe contamination occur
- available for the types:
 S/SX 0650, 0950, 1250 and 1800
- bolted aluminium cover for maximum stability

Steel band covers are also available as light-weight, economically priced alternatives to covering with the aluminium cover system²⁾

2) LS/LSX 1050 on request.

Special stays Customized special stays are possible on request. Please contact us.

Design of the cable carrier.

Determining the inner dimensions

The number, type and diameter of the cables to be laid determine the inner dimensions and the inner subdivision of the cable carrier.

The space required by the cables and hoses can be calculated taking into consideration the design instructions on page 28. The installation conditions give the required clearance height and the inside width of the cable carrier. The following are guide values for the dimensions of the required free space:

- for round cables: 10 % of the cable diameter
- for flat cables:
 10 % each of the cable width
 - 10 % each of the cable width/ cable thickness
- for hoses:20 % of the hose diameter

Basically, only cables which are suitable for use in cable carriers, such as e.g. KABELSCHLEPP LIFE-LINE cables, should be used.

Determining the bend radius

The bend radius is determined by two factors:

- The smallest permissible bend radius of the cables gives the smallest permissible bend radius of the cable carrier (in case of a smaller bend radius, the cables would be bent to an impermissible extent). Generally, the thickest or the stiffest cable to be carried determines the largest permissible minimum bend radius.
- 2. The available installation space determines the possible bend radius of the cable carrier. This must be checked with the specifications of the cables.

The following is a guide for selection of the minimum bend radius:

Minimum bend radius = 5...12 cable Ø d Bend radius fabrication tolerance: 0 - 5 %

If you have any questions, we are happy to advise you.

TIP: Cable service life

A greater bend radius of the cable carrier and thus greater bend radius (than the permissible minimum bend radius) usually increases the service life of the cables. Thus, if it is possible, preferably select a somewhat larger bend radius. When using our LIFE-LINE cables, a smaller bend radius can be selected in many cases.

ABELSCHLEP

the power to innovate

Calculation of the chain length

Fixed point arrangement in the middle of the travel length:

Ls

Unsupported length L_f
L_f =
$$\frac{L_S}{2}$$
 + t

See technical data of the types for Lf approval.

Chain length Lk

rounded off to pitch t

Chain length
$$L_k$$

 $L_k = \frac{L_S}{2} + L_B$

Bend length $L_B = KR \cdot \pi + Reserve$

We recommend placing the fixed-point connection in the middle of the travel length. This gives the shortest connection between the fixed and movable driver point and thus the most economical chain length and cable length.

Moveable

driver

Fixed point outside the middle of the travel path:

Lf

Fixed Point

(;)(;)

Centre of travel distance

 L_V = Length between connection point and middle of the travel length Ls = Maximum travel length of the consumer

Chain length Lk $L_{k} = \frac{L_{S}}{2} + L_{B} + L_{V}$

Chain length Lk rounded off to pitch t

Support

The support surface must be even and the support area must be free of obstacles. If a faultless support is not available on-site, you must use a support tray.

Detailed explanations can be found starting on page 163.

Design of the cable carrier.

Chain cover

Covered or closed cable carriers should be used for applications where chips or severe contamination occur. Two different cover variants are available for steel cable carriers:

- Steel band covers
- Aluminium cover system (RMD stay variant)

Detailed information about aluminium cover systems can be found with the respective types.

Detailed information about steel band covers can be found on page 166. Alternatively, our TUBE SERIES CONDUFLEX / MOBIFLEX can also be used.

Calculation of the connection height for steel cable carriers

Pretension and required installation height Hz

In order to achieve as large as possible unsupported length, KABELSCHLEPP cable carriers are made with pre-tensioning in the standard version. The pre-tensioning effects

Cable carrier without additional load

an elevation of the upper trough in the zone of the unsupported length. Please take account of the pre-tension when determining the required passage height H_Z .

Cable carrier with additional load (cables and hoses)

Chain connection – connection variants

There are no particular design requirements for connecting the cable carrier to the parts of your system. Various connection variants are possible.

- Driver connection: Attachment to moving machine or system part.
- Fixed point connection: Attachment to static machine, floor and system part.

Point of connection

- M Driver
- **F** Fixed point

Connection type

- A Bolts facing outward (standard)
- I Bolts facing inward
- H Threaded joint, rotated by 90° to the outside
- K Threaded joint, rotated by 90° to the inside

Connection surface

The connecting surfaces on the driver and fixed point can be mounted on the outside or inside according to preference.

- Ⅰ connector surface inside (< B_k)
- **A** connector surface outside (> B_k)

In the standard version, the connectors are mounted with the bolting to the outside and the connecting surface to the inside (FAI/MAI).

Overview of installation variants.

Code	Symbol	Description	Page	Cable carrier design LS/LSX	Cable carrier design S/SX	Enclosed cable carriers CONDUFLEX and MOBIFLEX
EBV 01		horizontal arrangement "unsupported"	32			-
EBV 02		horizontal arrangement "unsupported – overhanging"	32			
EBV 04		horizontal arrangement "with support"	33			•
EBV 05		horizontal arrangement "gliding in a guide channel"	34	_		_
EBV 06		horizontal arrangement "with continuous support structure"	35			-
EBV 07		horizontal arrangement "rotated 90° – straight"	38	•		•
EBV 08		horizontal arrangement "rotated 90° – looped"		•		•

Reference: Standard **A** Customized standard product **O** Special order

Code	Symbol	Description	Page	Cable carrier design LS/LSX	Cable carrier design S/SX	Enclosed cable carriers CONDUFLEX and MOBIFLEX
EBV 09		horizontal arrangement "rotated 90° – circular"	39	_		-
EBV 10		vertical arrangement "standing"	41			
EBV 11		vertical arrangement "hanging"	42			•
EBV 12		horizontal/ vertical arrangement "combined"	43			•
EBV 13		vertical arrangement "looped"	43			
EBV 14		vertical arrangement "hanging with bearing bolts"	43	•		_

Reference: Standard **A** Customized standard product **O** Special order

The installation variants shown demonstrate the many movement processes which can be triggered with a single cable carrier.

EBV 01

Horizontal arrangement unsupported

Note:

If you cannot find any suitable cable carrier in the unsupported range for your application, we recommend carrying out the following check:

- **1.** Provide support for the cable carrier in the unsupported area (see installation variant EBV 04).
- **2.** Select the "gliding in a guide channel" cable carrier system (see installation variant EBV 05).
- **3.** Use the cable carrier system "with continuous support structure" (see installation variant EBV 06).

Definition:

In the case of unsupported arrangements, the driver connection of the cable carrier is fastened to the movable part of the system and moves with it in the horizontal direction.

The upper run of the cable carrier stands free, i.e. unsupported and without sag, parallel over the entire supported lower run.

EBV 02 Horizontal arrangement unsupported – overhanging

EBV 04

Horizontal arrangement with support using support roller(s)

Definition:

If the unsupported length of the cable carrier is exceeded, the upper run can be supported.

Instead of using a KABELSCHLEPP cable carrier with supports, we recommend that you use the next size up, provided that the installation conditions allow this.

Support rollers – see also Accessories chapter, page 164.

Arrangement of support

Arrangement using one support roller:

 $a_{\rm R} = \frac{L_{\rm S}}{6}$

when L_S < 3 L_f

The distance of the support to the fixed point in this arrangement is approx. 1/6 of the total travel length.

Special design with lateral rollers:

when $L_S < 4 L_f$

For using the maximum possible travel length in the unsupported arrangement without travelling support construction.

Lateral rollers are mounted onto the chain links.

This kind of installation needs a flat surface, in certain cases a support tray may need to be installed.

Rolling schematic

EBV 05

Horizontal arrangement gliding in guide channel

Definition:

The upper run of the cable carrier **glides** on the lower run or on a sliding surface of the relevant guide channel.

Application:

For long travel lengths, which can no longer be realised in an unsupported design.

Condition: The cable carriers **must** be placed in a channel.

See page 160 for channel systems.

Glide elements:

Glide shoes are bolted to the side plates of the cable carrier. KABELSCHLEPP provides screw-on glide shoes made of abrasion-resistant, gliding plastics. The glide friction coefficient can be reduced to a value of $\mu < 0.2$!

Upper trough gliding on the lower trough

Standard glide shoes for S/SX 1250

Tip: Replaceable glide shoes are a very costeffective solution. When wear occurs, only the glide shoes are replaced and not the complete cable carrier.

Design information: The support construction of the guide channel needs to have the required stability.

Technical data – dimensional details of guide channels: see page 160.

Because of the many design parameters which need to be considered such an installation as this should be planned and designed by our engineers!

Arrangement of cable carrier

Single-sided arrangement of cable carrier

Determining the chain length:

$$L_{k} = \frac{L_{S}}{2} + L_{B} + KR$$

L_B – see technical data for selected chain type!

Opposing arrangement of cable carrier

The chain length is determined as for the single-sided arrangement!

It should be noted that for a moving application, both cable carriers should be designed to the same length and width.

EBV 06

Horizontal arrangement with continuous support structure

Owing to the multitude of parameters which must be taken into consideration, the system should be designed by our specialists!

Definition:

If the design conditions no longer permit the installation of an unsupported cable carrier or cable carrier with underslung support rollers with regard to the travel length, the acceleration or the traverse speed, a cable carrier system can be used.

Again, the basic element is the cable carrier.

Cable carrier systems are particularly suitable for use with large travel lengths and high traversing speeds under harsh operating conditions and large loads.

Cable carrier systems – see page 36/37.

Cable Carrier System Type 225

The KABELSCHLEPP cable carrier system is designed either as a one-sided system with one cable carrier or as opposing system with two cable carriers.

The cable carriers with running rollers are supported along their entire length by the support carriage which travels with the system. The supporting construction is moved in both directions using a tension cable system. The friction forces occurring on the system are minimal due to the roller support and roller guide of the cable carriers on the support carriage

and of the support carriage on the running frame. To date, KABELSCHLEPP has supplied systems with the following specifications:

- maximum total travel length $L_{s max} = 222 m$
- $v_{max} = 4 \text{ m/s}$ maximum travel speed
- maximum acceleration $a_{max} = 8 \text{ m/s}^2$

One sided arrangement (schematic illustration)

Opposing arrangement (schematic illustration)

Cross-section view of cable carrier system

The KABELSCHLEPP cable carrier system Type 225 consists of the following components:

1 Cable carrier(s)

with running and guide rollers attached to the side

- **2** Support carriage with running and guide rollers providing support over the entire length
- **3** Driver carriage with running and guide rollers
- 4 Rolling carriage
- 5 Tension cable
- 6 Tension cable roller
- **7** Tensioning device

Abbreviations:

- = Clear width Вn in rolling carriage
- = Overall width BG of rolling carriage
- = Width of cable carrier(s) Bk
- B_W = Support carriage width
 - (max. width)
- = Installation height of cable carrier(s) H_G = Rolling carriage height
- L_G = Rolling carriage length
- LS = Travel length

Н

LW = Support carriage length

Cable Carrier System Type 228

For arrangement of cable carriers running in opposite directions!

The cable carriers with running rollers are supported along their entire length by the support carriage which travels with the system. The support carriage is moved by means of a tension cable system. This cable carrier system requires less width than the Type 225 cable carrier system. The overall width is only slightly greater than the chain width B_k .

General view of the cable carrier system (schematic illustration)

Cross-section view of cable carrier system

Abbreviations:

- B_A = Support tray width
- $b_1 \quad = \text{Clear width of support tray} \\$
- B_G = Overall system width
- B_k = Cable carrier width
- B_W = Support carriage width H = Installation height
 - = Installation height of cable carriers
- $H_{\rm M}$ = Driver carriage height
- H_W = Support carriage height
- KR = Bend radius of cable carriers
- LA = Support tray length
- $L_s = Travel length$
- LW = Support carriage length
- X_F = Distance between
 - connections at fixed-point
- X_M = Distance between connections at driver

The KABELSCHLEPP cable carrier system Type 228 consists of the following components:

- **1** Cable carrier(s) with running rollers
- **2 Support carriage**, supporting carrier(s) along their entire length
- **3** Driver carriage with running rollers
- **4** Fixed point connection
- **5** Cable tensioning device
- **6** Tension cable with guiding rollers
- **Z** Support tray
- 8 Tension cable anchor at the fixed point

EBV 07

Horizontal arrangement rotated 90° - straight

Definition:

This installation variant can be designed with all steel cable carriers.

The cable carrier used in the traditional horizontal arrangement is rotated through 90°. It glides on the outside of the chain band on a tray or in a channel by means of special slides or rollers.

Application:

Generally, cable carriers turned through 90° are used if the height of the installation area is insufficient to allow a horizontal installation.

Make sure that cables/hoses are placed in the carrrier with sufficient clearance from one another.

The best technical solution for this is the hole stay, which allows for the optimum placement of cables/hoses in carrier.

Systems for extended travel lengths

Single-sided arrangement

(with guide channel)

Opposing arrangement

Abbreviations: $b_{KA} = Width of$

restricted channel

IKA = Length of restricted channel

The material and quality of the channel floor must be such that a low-wear process is guaranteed with the lowest frictional forces.

The cable carriers run on plastic gliders, ball castors, steel rollers or steel rollers with rubber tyres. Distance glides or rollers are mounted to the outside and/or inside of the chain band. These prevent wearing of the channel walls and guarantee smooth operation of the system (see installation variant EBV 09).

EBV 09

Horizontal arrangement rotated 90° - circular

Definition:

circular movements.

installation.

In this arrangement the cable carrier is rotated through 90° for use with machine components performing circular operations. Through the combination of bend radius KR and reverse bend radius RKR, the cable carrier deliberately moves in two precisely defined

The carrier system is mounted to the inner and outer ring of a guide channel. The moving

ring (inner or outer ring) is the driver for this

Application:

Cable carriers in this configuration will always have to be guided in a channel. The driver can be fitted either on the inside or the outside.

In order for the carrier system to perform a circular motion, a special chain link design is necessary.

The circular - rotated through 90° cable carriers either run on round gliders, ball castors, steel rollers or steel rollers with rubber tyres attached to the lower chain band in a sheet steel channel.

Support and guide elements (possible combinations):

Gliders

chain band*

Gliders on upper and ball castors on lower chain band

*) for installations with insufficient carrier installation height H_F the glider on the upper chain band can be omitted.

The sheet steel guide channel can be delivered in two different versions:

Recessed channel

on upper and lower

for the installation of a single-sided carrier system.

Continuous channel for the installation of opposing carrier systems

on lower chain band

Gliders on upper and

double guiding rollers

Spacers for gliders or rollers are mounted to the inside or outside of the upper chain band in order to prevent the cable carriers dragging along the channel walls and to ensure smooth operation of the installation. With long travel lengths or particularly tall installations, a guide carriage is used to stabilize the cable carriers.

Single-sided arrangement with detached guide channel (schematic illustration)

Angles of rotation of up to **600°** are possible in a single-sided arrangement!

Abbreviations:

- α = Fixed point angle
- β = Travel length
- B_E = Width of cable carrier
- b_{KA} = Channel width in the narrow section
- B_{KA} = Channel width
- H_E = Height of cable carrier
- H_{KA} = Height of guide channel
- KR = Bend radius
- R_{KR} = Reverse bend radius
- rKA = Internal channel radius
- R_{KA} = External channel radius
- **F** = Fixed point
- **M 1** = Driver end position 1
- **M 2** = Driver end position 2

Opposing arrangement with guide carriage

(schematic illustration)

Angles of rotation of up to **500°** are possible with the opposing arrangement!

Channel cross sectional view

Owing to the numerous design options available with this installation variant, please contact us for assistance.

We can supply the complete solution: ready to assemble, installation included if required.

EBV 10 Vertical arrangement standing

Connection elements

The connection elements have to be mounted to the machine (fixed-point/driver) to prevent the cable carrier from tilting to the outside, i.e. the connection has to be **rigid**.

H = 2 KR + hG

The distance between the fixed-point and driver connection depends on the selected bend radius.

Support

Generally, the cable carrier has to be supported at the fixed point and on the outside of the driver.

The length of the support is determined by the additional load, degree to which the carrier is filled, travel length and the selected cable carrier.

Direction of movement

In some instances, the complete unit also moves **crosswise** to the carrier standing vertically.

In these cases the carrier needs to be equipped with the appropriate guides to follow this movement.

Definition:

runs.

Mount the cable carrier in a way to ensure parallel movement of the active and passive

No or only the minimum pre-tension should

Calculation of the chain length – see page 27.

be applied to the cable carrier.

EBV 11 Vertical arrangement hanging

Definition:

We differentiate between:

Vertical hanging arrangement Direction of movement of cable carrier: vertical only

In the case of a purely vertical movement, the cable carrier can be installed without special side supports.

Calculation of the chain length: see page 27.

Vertical arrangement - hanging

Direction of movement of cable carrier:

vertical/horizontal combined

Even with a combined vertical/horizontal movement, the cable carrier can be installed without special side supports.

Vertical arrangement – hanging

Direction of movement of cable carrier:

vertical only

If the entire unit moves crosswise and/or along to the hanging cable carrier, an additional side guide must be fitted to the longer cable carriers.

Generally, the following applies to the vertical hanging arrangement

- The cable carrier must always be installed without any or with only minimal pretension.
- Extreme care should be taken when fixing the cables/hoses to the driver and to the fixed point.

Please comply with the Guidelines for installing cables/hoses in KABELSCHLEPP cable carrier systems.

More information: www.kabelschlepp.de

EBV 12

Horizontal/vertical arrangement combined

EBV 13 Vertical arrangement looped

Definition:

KABELSCHLEPP cable carriers can also be utilized for combined horizontal/vertical motion ("Multi-axis").

This arrangement requires no special structural preconditions.

Definition:

For this kind of arrangement cable carriers are available in all standard versions.

Depending on spin/acceleration appropriate guide plates should be provided to ensure optimal functionality (see illustration).

EBV 14 Vertical arrangement hanging with bearing bolts

Definition:

This vertical arrangement of the cable carrier with additional support elements attached offers the option of using the **cable carrier as a lifting device** for machine components attached to its elements (e.g. control panels, manipulators etc.).

The cable carrier is driven by sprocket wheels.

The pitch circle radius must be equal to or larger than the selected bend radius of the cable carrier.

This installation is either motor driven or a balance weight is used.

Owing to the multitude of design options inherent to this kind of configuration, please consult our technical team about this installation variant.

Below are some further options which are possible in connection with the installation variants described. If the cable carrier cross section is inadequate to accomodate the number of cables/hoses, the following installation options are available:

A1 Adjacent arrangement

Possible with all cable carriers and hoses.

A3 Nesting arrangement

Possible with all cable carriers

A2 Multi-band arrangement

If the available space will not allow a cable carrier system to be installed because of the required width, a **nesting** or **opposing** system can be arranged.

A4

Laying guidelines for cables and hoses.

Laying cables in cable carriers must be made extremely carefully.

Hoses must be highly flexible and may only contract or expand slightly in length when under pressure.

Information on the properties of hoses with regard to length can be found in the hose manufacturer's catalogue.

Basically, only cables which are suitable for use in cable carriers, such as e.g. KABELSCHLEPP LIFE-LINE cables, should be used.

The cables and hoses must be able to move freely inside the cable carrier. They must neither be fixed in the cable carrier or bundled together.

The following are guide values for the dimensions of the required free space:

- for round cables:
 10 % of the cable diameter
- for flat cables:
 10 % each of the cable width/ cable thickness
- for hoses:20 % of the hose diameter

Weight distribution for the cable laying

When laying the cables, please ensure that the cable weight is distributed symmetrically across the width of the cable carrier.

Unfavorable weight distribution

The maximum service life of the cable carrier can be achieved by uniform loading.

Favorable weight distribution

Do not raise looped cables.

When cutting the cables for laying in the cable carrier, the coil must be arranged tangentially and not in loops for the cutting to length.

Uncoil drum commodities without twisting.

The drum product must be uncoiled without twisting and cut to length when cutting the cables for installing in the cable carrier.

Cables lying next to each other with greatly differing diameters should be separated using dividers. Cables with greatly differing diameters lying directly next to each other must be avoided.

If laying several cables without separators is unavoidable, care should be taken that the remaining free passage height is lower than the smallest cable diameter. Only thus can the cables be prevented from getting wrapped around one another.

In the case of multi-layer laying, we recommend providing a height separation between the individual layers for electrical cables.

Custom-made hole stays or separation by means of dividers prevent cables lying next to each other from rubbing against each other. In many cases, laying every cable in a separate chamber is advantageous.

A height separation must always be provided between flat cables stacked in several layers.

Highly flexible, thin cables with low bending strength should be installed loose side by side and arranged in a protective sheath. The cross section of the protective sheath should be chosen considerably larger than the total of the individual cable cross sections.

As a reference value for measuring the cross section, each cable should have a clearance of approx. 10 % of its diameter.

Regardless of the kind of divider used for chain stay cross-sections, the following details have to be taken into consideration:

Pressure hoses must be able to move freely, as they may contract or expand with pressure fluctuations.

Contraction or expansion can only be compensated for in the bend radius section of the carrier.

In order to calculate the necessary clearance, please refer to hose manufacturers' information with regard to linear expansion or contraction.

Basically, it must be ensured that the cables can take the bend radius KR without any force being necessary.

They must be able to move freely in the longitudinal direction and must not exert any tensile forces on the cable carrier in the chain bend.

In the case of multi-layer laying, the cables must be drawn into the cable carrier in such a way that they have a corresponding clearance between each other even in the bend of the chain.

When there is a cluster of electrical cables in covered cable carriers or in cable carrier tubes, the current carrying capacity of the cables must be designed in accordance with the applicable standards, regulations and recommendations so that the maximum permissible temperatures for the corresponding cable materials and the material of the cable carrier are not exceeded.

Please note that this is a closed system (limited convection) during the design.

Strain relief of cables and hoses.

The strain relief of the cables depends on the type of cable, the length of the cable carrier and the installation position:

Generally, it must be ensured that the stress occurs on a large area on the outer sleeve so that individual cores in electrical cables are not crushed and that displacement of the cables is not possible.

- Cables with high flexibility and low inherent stiffness must have strain relief at the fixed point and at the driver. Otherwise there is the risk that they will be pressed out between the chain stays.
- In the case of vertically hanging cable carriers, the cables must also have strain relief at the fixed point and at the driver.
- In the case of travel lengths within the unsupported area of the cable carrier, electrical cables should preferably have strain relief at the driver and at the fixed point.
- Pressure hoses with tailpieces which are bolted in the immediate vicinity of the driver and the fixed point do not need strain relief. If the threaded connection is further away, strain relief analogous to the electrical cables is recommended.

In the case of long travel lengths in the sliding arrangement, cables should have strain relief according to the following procedure (except cables with low inherent stiffness):

Strain relief at the driver/end of the chain

After positioning the chain driver (moving chain end) in the **thrust end position**, the cables on the chain end to be moved have strain relief.

Correct cable length in the chain

After new positioning of the chain driver (moving chain end) in the **tension end position** of the chain, the cables in the chain bend are checked for tension-free length and if necessary "pushed into the chain".

Strain relief at the fixed point/chain end

The cables finally have strain relief at the fixed point/chain end with this tension-free "insertion length".

We are there for you! Fon: +49 271 5801-0

TIP: Jacket wear on aluminium stays The jacket wear test shows up to 13 times

optimized

stay geometry

■ Jacket wear of PVC cables against stays scaled against aluminium

simple

stay geometry

greater jacket wear test snows up to 13 times greater jacket wear of PVC cables on plastic stays as compared with aluminium stays.

Save costs due to low jacket wear for cables

13.0 12 10 Jacket wear 8 6 4 2 1.0 0 Aluminium Fibre glass **Fibre glass** reinforced reinforced plastic, plastic,

on the stay material in extensive series of tests. Thereby, already existing test results have been confirmed several times. Aluminium as a support is very gentle on the sheathing of cables. This result is independent of the cable manufacturer and applies to the most common jacket

We have examined the wear of different cables depending

Frame stays made of aluminium.

support is also responsible for the jacket wear.

materials.

14

Low jacket wear is an essential requirement for a long

As well as the jacket material, the stay material as cable

service life of the cables in the cable and hose carrier system.

Long service life of the cables.

As well as the good abrasion index, aluminium is particularly suitable as stay material due to its **high strength for a low intrinsic weight**. Chain widths up to 1000 mm can be achieved without the chain being particularly stressed due to additional weight.

Further information about the material characteristics of the stay material can be found on page 50.

49

Material specifications.

The cable carrier material depends on its intended application. Depending on the expected level of corrosion, we can offer various materials. The zinc galvanized and black coated standard versions can be used for low loads. The standard

design, in zinc-plated steel, cen be used for light loads. For higher loads the carriers can be chrome-plated. In the case of extremely high specifications the high grade stainless steel option is available.

	Chain band material							
	Steel with zinc coating (standard for S series)	Steel with black special coating (standard for LS series)	Stainless steel	Stainless steel				
	St	Sb	ER 1	ER 1S	ER 2			
Corrosion resistance	limited		good corrosion resistance in natural environment media, however without chlorine and salt concentrations (no halogens and no sea water)	Excellent corrosion resistance in the acids environment, for phosphorus and organic acids and media containing chlorides. Significantly better corrosion resistance than ER 1. Insensitive to stress corrosion cracking. Good resistance to sea water.	Excellent corrosion resistance in the acids environment, for phosphorus and organic acids and media containing chlorides. Significantly better corrosion resistance than ER 1. Insensitive to stress corrosion cracking. Good resistance to sea water.			
Magnetizability	yes		yes no no		present			
Mechanical characteristic	high strength, good load-bearing capacity		low strength as standard material; reduced by approx. 30 % for unsupported lengths	low strength as standard material; reduced by approx. 30 % for unsupported lengths	high strength, good load-bearing capacity (as for standard material)			
Applications	particular corrosion prote- mechanical engineering and application areas in carriers are permitted du	hich do not require any ction, in particular general and plant construction, n which no plastic cable ue to their load-capacity, nvironmental conditions.	Application areas as for the standard material, however with particular requirements for the corrosion resistance.	Application areas as for the standard material, however particularly suitable for environments with salt concentrations such as, e.g. port facilities. Also suitable for foodstuffs .	Typical purposes are: chemicals and petrochemicals industry, offshore, parts and apparatus of the chemical industry, textile industry, cellulose manufacture, dye works, and in the photographic, paint, synthetic resin and rubber industries, shipbuilding			

Material table: **Steel cable carriers**

Material	Series							
Wateria	LS	LSX	S	SX				
St								
Sb								
ER 1								
ER 1S								
ER 2								

Material information: Standard stay systems made of aluminium alloy

The advantages of alloys lie in the combination of mechanical, physical and chemical properties of these materials.

Material:	Technical Data:				
aluminium alloy	Density:	2.7 g/cm ³			
light, strong, hard, smooth	Modulus of Elasticity:	70 kN/mm ²			
and resistant	Electrical conductivity:	28 – 34 m/W mm ²			
modern design	Thermal conductivity:	1.9 – 2.1 W/k · cm			
5	Heat expansion coefficient:	23.4 cm/cm k 10 ⁶			
 optimum friction and wear characteristics 	Strength:	215 N/mm ²			
	Elongation after fracture:	12 %			

Light metal alloys show no tendency towards brittleness at low temperatures. Application: Hole stays, frame stay profiles, profiles to separate the cables/hoses in the chain cross-section

Stay systems using special materials are also available for applications with extreme requirements.

ABELSCHLEPP

the power to innovate

Chemical resistance of the standard plastic parts.

The table on the right shows that plastic components should not be used when exposed to acid agents.

Please contact us regarding materials not listed in the table!

Standard material: KS 7422 Standard color: black

Abbreviations:

- resistant
- limited resistance
- X non-resistant
- ∇ soluble
- G = saturated diluted solution
- H = commercial grade
- TR = technically pure

AcetoneTRImage: state stat	Agent	Percentage of mass	Temperature °C	Resistance
Ammonia (aqueous)TR+ 70Ammonia+ 20BenzineH+ 85BenzolH-BitumenH-Boric Acid (aqueous)H-Butyric acid20-Calcium chloride (aqueous)GL+ 23Chlorine, chlorinated waterChlorine acid (aqueous)10-Diesel oilH-Acetic acid (aqueous)10-Chromic acid (aqueous)10-Diesel oilH-Acetic acid aqueous, conc.95-Ethanol40-Ethanol40-Iquid petrol. gas (DIN 51622)-Fluorinated hydrocarbons-Formaldehyde and polymac.TRFormaldehyde (aqueous)30Potassium hydroxide10Potassium nhydroxide10Potassium nhydroxide10Potassium nhydroxide10Milk-Lactic acid (aqueous)10Milk-Lactic acid (aqueous)10Oil/edible and lubricatingHPoranafin, paraffin oilHPrograme gas, propyl. hydrideTRPrograme gas, propyl. hydride	Acetone	TR		•
Ammonia+ 20BenzineH+ 85BenzolH•BitumenH•BitumenH•Butyric acid20•Calcium chloride (aqueous)GL+ 23Chlorine, chlorinated water•Chornic acid (aqueous)10•Diesel oilH•Acetic acid aqueous, conc.95•Acetic acid (aqueous)10•Ethyl acetateTR•Paints & lacquers••Greases and waxesH•Formaldehyde and polymac.TR•Formaldehyde (aqueous)30•Formaldehyde (aqueous)10•Potassium hiydroxide10•Potassium nitrate (aqueous)10•Potassium nitrate (aqueous)10•MilkH•MilkH•Paraffin, paraffin oilH•Pranafin oilH•Pranafin oilH•Pranafin oilH•Pranafin oilH•Pranafin, paraffin oilH•Pranafin acid (aqueous)>20•Pidyetoric acid2•Propane gas, propyl. hydrideTR•Pranafin, caid (aqueous)>20•Pidyetoric acid2•Pidyetoric acid10•Pidyetoric acid10•Pidyetoric acid2• <t< td=""><td>Formic acid</td><td>10</td><td></td><td>×</td></t<>	Formic acid	10		×
BenzineH+ 85BenzolH●BitumenH●BitumenH●Butyric acid20●Calcium chloride (aqueous)GL+ 23Chlorine, chlorinated water●Chorine acid (aqueous)10●Diesel oilH●Acetic acid aqueous, conc.95●Acetic acid (aqueous)10●Ethanol40●Ethanol40●Ethanol40●Ethanol40●H●●Liquid petrol. gas (DIN 51622)●Fluorinated hydrocarbons●Formaldehyde (aqueous)30●Hydraulic olsH●Potassium hydroxide10●Potassium chloride (aqueous)10●MikkH●Lactic acid (aqueous)10●MikkH●Lactic acid (aqueous)10●MilkH●Lactic acid (aqueous)10●MilkH●Lactic acid (aqueous)10●Olivedible and lubricatingH●Propane gas, propyl. hydrideTR●Propane gas, propyl. hydrideTR●Propane gas, propyl. hydrideH●Protechoric acid2●VaselineH●Tartaric acid (aqueous)>20▼Hydrochloric acid2 <td< td=""><td>Ammonia (aqueous)</td><td>TR</td><td>+ 70</td><td></td></td<>	Ammonia (aqueous)	TR	+ 70	
BenzolHImage: Constraint of the	Ammonia		+ 20	
JamesHImage: Constraint of the c	Benzine	Н	+ 85	
Boric Acid (aqueous)HImage: Constraint of the sector	Benzol	Н		
Butyric acid20Image: constraint of the sector of the	Bitumen	Н		\bigcirc
Calcium chloride (aqueous)GL+ 23Chlorine, chlorinated waterHChlorine waterHChlorine waterHChromic acid (aqueous)10Diesel oilHAcetic acid aqueous, conc.95Acteit acid (aqueous)10Ethanol40Ethyl acetateTRPaints & lacquers•Greases and waxesHLiquid petrol, gas (DIN 51622)•Fluorinated hydrocarbons•Formaldehyde (aqueous)30Hydraulic oilsHPotassium hydroxide10Potassium nitrate (aqueous)10MilkHLactic acid (aqueous)10MilkHLactic acid (aqueous)10Olideible and lubricatingHPotassium nitrate (aqueous)10MilkHLactic acid (aqueous)10Oil-deible and lubricatingHPolyester resinsHPolyester resinsHPropane gas, propyl. hydrideTRPropane gas, propyl. hydrideTRPropane gas, propyl. hydrideTRPropane gas, propyl. hydrideTRPropane gas, propyl. hydrideHArtaric acid (aqueous)10Iubricatns, edib fatsHOlicocatioPProtastineHArtaric acid (aqueous)10Artaric acid (aqueous)10JudicatateTRMercuryTRHydrochloric acid <td>Boric Acid (aqueous)</td> <td>Н</td> <td></td> <td>\bigcirc</td>	Boric Acid (aqueous)	Н		\bigcirc
Chlorine, chlorinated waterHChlorine waterHChromic acid (aqueous)10Diesel oilHAcetic acid aqueous, conc.95Acetic acid (aqueous)10Ethanol40Ethanol40Ethanol40Greases and waxesHLiquid petrol. gas (DIN 51622)•Florinated hydrocarbons•Formaldehyde (aqueous)30Formaldehyde (aqueous)10Potassium hydroxide10Potassium hydroxide10Potassium nitrate (aqueous)10Potassium chloride (aqueous)10MilkHLactic acid90MilkHCardid (aqueous)10Potassium chloride (aqueous)10Potassium nitrate (aqueous)10Olic acid90MilkHCardid (aqueous)10Olic acidHParaffin, paraffin oilHPolyester resinsHPropane gas, propyl. hydrideTRPropane gas, propyl. hydrideTRMydrochloric acid (aqueous)20Vydrochloric acid (aqueous)10IubricatingHPropane gas, propyl. hydrideTR•Hydrochloric acid (aqueous)20VaselineHGrataric acid (aqueous)10Tartaric acid (aqueous)10Tartaric acid (aqueous)10Colic acidFPropane gas, propyl. hydride <td>Butyric acid</td> <td>20</td> <td></td> <td>\bigcirc</td>	Butyric acid	20		\bigcirc
Answer (Allower (Allowe	Calcium chloride (aqueous)	GL	+ 23	\bigcirc
Chromic acid (aqueous)1010Diesel oilH•Acetic acid aqueous, conc.95•Acetic acid (aqueous)10•Ethanol40•Ethanol40•Ethyl acetateTR•Paints & lacquers••Greases and waxesH•Fluorinated hydrocarbons••Formaldehyde (aqueous)30•Formaldehyde (aqueous)30•Hydraulic oilsH•Potassium hydroxide10•Potassium nitrate (aqueous)10•MilkH•Lactic acid (aqueous)10•MilkH•Oli/edible and lubricatingH•Oli/edible and lubricatingH•Propane gas, propyl. hydrideTR•Propane gas, propyl. hydrideTR•Hydrochloric acid (aqueous)>20▼Hydrochloric acid (aqueous)>20▼Hydrochloric acid (aqueous)>20▼Hydrochloric acid (aqueous)>20▼Hydrochloric acid (aqueous)>20▼Hydrochloric acid (aqueous)10•Divertier esinsH•Hydrochloric acid (aqueous)>20▼Hydrochloric acid (aqueous)>20▼Hydrochloric acid (aqueous)>20▼Hydrochloric acid (aqueous)>20▼Hydrochloric acid (aqueous)10•	Chlorine, chlorinated water			\bigcirc
Diesel oilH●Acetic acid aqueous, conc.95ItAcetic acid (aqueous)10ItEthanol40ItEthanol40ItEthyl acetateTRItPaints & lacquersItItGreases and waxesHItLiquid petrol. gas (DIN 51622)ItItFormaldehyde and polymac.TRItFormaldehyde (aqueous)30ItPotassium hydroxide10ItPotassium chloride (aqueous)10ItPotassium nitrate (aqueous)10ItMethyl acetateTRItMilkHItLactic acid (aqueous)10ItOil/edible and lubricatingHItOil/edible and lubricatingHItPropane gas, propyl. hydrideTRItPropane gas, propyl. hydrideTRItHydrochloric acid (aqueous)20ItHydrochloric acid (aqueous)220ItHydrochloric acid (aqueous)20ItHydrochloric acid (aqueous)21ItHydrochloric acid (aqueous)21ItHydrochloric acid (aqueous)21ItHydrochloric acid (aqueous)21ItHydrochloric acid (aqueous)21ItHydrochloric acid (aqueous)20ItHydrochloric acid (aqueous)20ItHydrochloric acid (aqueous)21ItHydrochloric acid (aqueous)20 <td>Chlorine water</td> <td>Н</td> <td></td> <td>×</td>	Chlorine water	Н		×
Acetic acid aqueous, conc.95Image: concent of the sector of the se	Chromic acid (aqueous)	10		×
Acetic acid (aqueous)10IEthanol40•Ethyl acetateTR•Paints & lacquers••Greases and waxesH•Liquid petrol. gas (DIN 51622)••Fluorinated hydrocarbons••Formaldehyde and polymac.TR•Formaldehyde (aqueous)30•Hydraulic oilsH•Potassium nitrate (aqueous)10•Potassium nitrate (aqueous)10•MilkH•Lactic acid (aqueous)10•Mineral oilH•Sodium carbonate (aqueous)10•Oli/edible and lubricatingH•Propane gas, propyl. hydrideTR•Propane gas, propyl. hydrideTR•Hydrochloric acid20VHydrochloric acid (aqueous)10•Tartaric acid (aqueous)10•Tartaric acid (aqueous)10•Tartaric acid (aqueous)10•KercuryTR•Hydrochloric acid (aqueous)>20VHydrochloric acid (aqueous)10•Tartaric acid (aqueous)10•Tartaric acid50•Tartaric acid50•XyleneTR•	Diesel oil	Н		\bigcirc
Ethanol40•Ethyl acetateTR•Paints & lacquers••Greases and waxesH•Liquid petrol. gas (DIN 51622)••Fluorinated hydrocarbons••Formaldehyde and polymac.TR•Formaldehyde (aqueous)30•Hydraulic oilsH•Potassium hydroxide10•Potassium chloride (aqueous)10•Potassium nitrate (aqueous)10•MilkH•Lactic acid (aqueous)10•MilkH•Lactic acid (aqueous)10•Oil/edible and lubricatingH•Oli/edible and lubricatingH•Paraffin, paraffin oilH•Paraffin, paraffin oilH•Propane gas, propyl. hydrideTR•Hydrochloric acid (aqueous)>20VHydrochloric acid (aqueous)10•Hydrochloric acid (aqueous)>20VHydrochloric acid (aqueous)>20VHydrochloric acid (aqueous)10•Tartaric acid50•XyleneTR• <td>Acetic acid aqueous, conc.</td> <td>95</td> <td></td> <td>×</td>	Acetic acid aqueous, conc.	95		×
Ethyl acetateTRImage: Constraint of the constraint	Acetic acid (aqueous)	10		
Paints & lacquersIGreases and waxesHLiquid petrol. gas (DIN 51622)IFluorinated hydrocarbonsIFormaldehyde and polymac.TRFormaldehyde (aqueous)30Hydraulic oilsHPotassium hydroxide10Potassium chloride (aqueous)10Potassium nitrate (aqueous)10Potassium nitrate (aqueous)10MilkHLactic acid (aqueous)10Mineral oilHSodium carbonate (aqueous)10Oil/edible and lubricatingHPotassinsHPolyester resinsHPropane gas, propyl. hydrideTRMydrochloric acid (aqueous)>20Hydrochloric acid (aqueous)2Mircans, edible fatsHVaselineHTartaric acid (aqueous)10Tartaric acid50Tartaric acid50XyleneTRColor50Tartaric acid50Tartaric acid50XyleneTRColor50Tartaric acid50Tartaric acidTartaric	Ethanol	40		
Greases and waxesHImage: Constraint of the constra	Ethyl acetate	TR		
Liquid petrol. gas (DIN 51622)Image: Comparison of the comp	Paints & lacquers			
Fluorinated hydrocarbonsImage: constraint of the sector of th	Greases and waxes	Н		
Formaldehyde and polymac.TRImage: style styl	Liquid petrol. gas (DIN 51622)			
Formaldehyde (aqueous)30IHydraulic oilsH●Potassium hydroxide10●Potassium chloride (aqueous)10●Potassium nitrate (aqueous)10●Methyl acetateTR●MilkH●Lactic acid (aqueous)10●Lactic acid (aqueous)10●Mineral oilH●Sodium carbonate (aqueous)10●Oil/edible and lubricatingH●Oleic acidH●Propane gas, propyl. hydrideTR●Hydrochloric acid (aqueous)>20▼Hydrochloric acid2€Lubricants, edible fatsH●Tartaric acid (aqueous)10●Tartaric acid (aqueous)10●Tartaric acid50IXyleneTR●	Fluorinated hydrocarbons			
Hydraulic oilsHImage: mathematic system of the syste	Formaldehyde and polymac.	TR		
Potassium hydroxide10Potassium chloride (aqueous)10Potassium nitrate (aqueous)10Methyl acetateTRMilkHLactic acid (aqueous)10Lactic acid (aqueous)10Lactic acid90Mineral oilHSodium carbonate (aqueous)10Oleic acidHParaffin, paraffin oilHPolyester resinsHPropane gas, propyl. hydrideTRMercuryTRHydrochloric acid (aqueous)>20VaselineHOleic acid2Tartaric acid (aqueous)10Tartaric acid (aqueous)10MercuryTRHydrochloric acid2KyleneTRColic acid10Colic acid10Tartaric acid50Tartaric acid50XyleneTROleic acid50	Formaldehyde (aqueous)	30		
Potassium chloride (aqueous)10Potassium nitrate (aqueous)10Methyl acetateTRMilkHLactic acid (aqueous)10Lactic acid (aqueous)10Lactic acid90Mineral oilHSodium carbonate (aqueous)10Oil/edible and lubricatingHOleic acidHParaffin, paraffin oilHPolyester resinsHPropane gas, propyl. hydrideTRMercuryTRHydrochloric acid (aqueous)>20VaselineHVaselineHTartaric acid (aqueous)10Tartaric acid (aqueous)10Tartaric acid50XyleneTRColumina Tartaric acid50Tartaric acid50XyleneTROlicitacid50Columina Tartaric acid50Columina Tartaric Acid50 <td>Hydraulic oils</td> <td>Н</td> <td></td> <td></td>	Hydraulic oils	Н		
Potassium nitrate (aqueous)10●Methyl acetateTR●MilkH●Lactic acid (aqueous)10●Lactic acid (aqueous)90▼Lactic acid90▼Mineral oilH●Sodium carbonate (aqueous)10●Oil/edible and lubricatingH●Paraffin, paraffin oilH●Polyester resinsH●Propane gas, propyl. hydrideTR●MercuryTR●Hydrochloric acid (aqueous)>20▼Hydrochloric acid (aqueous)10●VaselineH●Tartaric acid (aqueous)10●Tartaric acid (aqueous)50□XyleneTR●	Potassium hydroxide	10		
Methyl acetateTRMilkHLactic acid (aqueous)10Lactic acid (aqueous)90Mineral oilHSodium carbonate (aqueous)10Oil/edible and lubricatingHOleic acidHParaffin, paraffin oilHPolyester resinsHPropane gas, propyl. hydrideTRMercuryTRHydrochloric acid (aqueous)>20VaselineHOleic acid2XyleneTR	Potassium chloride (aqueous)	10		
MilkH●Lactic acid (aqueous)10●Lactic acid90▼Mineral oilH●Sodium carbonate (aqueous)10●Oil/edible and lubricatingH●Oleic acidH●Paraffin, paraffin oilH●Polyester resinsH●Propane gas, propyl. hydrideTR●MercuryTR●Hydrochloric acid (aqueous)>20▼Hydrochloric acid2▼Lubricants, edible fatsH●VaselineH●Tartaric acid (aqueous)10●Tartaric acid (aqueous)10●XyleneTR●	Potassium nitrate (aqueous)	10		\bigcirc
Lactic acid (aqueous)10Lactic acid90Image (action (actio	Methyl acetate	TR		\bigcirc
Lactic acid90Mineral oilHSodium carbonate (aqueous)10Oil/edible and lubricatingHOleic acidHParaffin, paraffin oilHPolyester resinsHPropane gas, propyl. hydrideTRMercuryTRHydrochloric acid (aqueous)>20VaselineHVaselineHTartaric acid (aqueous)10Tartaric acid (aqueous)10Tartaric acid (aqueous)10Tartaric acid (aqueous)10Tartaric acid (aqueous)10Tartaric acid (aqueous)50Tartaric acid (aqueous)10Tartaric acid50XyleneTR	Milk	Н		\bigcirc
Mineral oilHImage: market information of the informatio	Lactic acid (aqueous)	10		\bigcirc
Sodium carbonate (aqueous)10Image: Constraint of the text of tex of text of text of text of text of	Lactic acid	90		×
Oil/edible and lubricatingH●Oleic acidH●Paraffin, paraffin oilH●Polyester resinsH●Propane gas, propyl. hydrideTR●MercuryTR●Hydrochloric acid (aqueous)>20▼Hydrochloric acid2▼Lubricants, edible fatsH●VaselineH●Tartaric acid (aqueous)10●Tartaric acid50□XyleneTR●	Mineral oil	Н		\bigcirc
Oleic acidHImage: Constraint of the state of the	Sodium carbonate (aqueous)	10		\bigcirc
Paraffin, paraffin oilHPolyester resinsHPropane gas, propyl. hydrideTRMercuryTRMydrochloric acid (aqueous)>20Hydrochloric acid (aqueous)2Lubricants, edible fatsHVaselineHTartaric acid (aqueous)10Tartaric acid50XyleneTR	_	Н		
Polyester resinsH●Propane gas, propyl. hydrideTR●MercuryTR●Hydrochloric acid (aqueous)>20▼Hydrochloric acid (aqueous)2▼Lubricants, edible fatsH●VaselineH●Tartaric acid (aqueous)10●Tartaric acid50□XyleneTR●	Oleic acid	Н		•
Propane gas, propyl. hydrideTRMercuryTRHydrochloric acid (aqueous)>20Hydrochloric acid2Lubricants, edible fatsHVaselineHTartaric acid (aqueous)10Tartaric acid50XyleneTR	Paraffin, paraffin oil	Н		•
MercuryTRHydrochloric acid (aqueous)>20Hydrochloric acid2Lubricants, edible fatsHVaselineHTartaric acid (aqueous)10Tartaric acid50XyleneTR	Polyester resins	Н		•
Hydrochloric acid (aqueous)>20 ∇ Hydrochloric acid2 \blacktriangleright Lubricants, edible fatsH \bullet VaselineH \bullet Tartaric acid (aqueous)10 \bullet Tartaric acid50 \Box XyleneTR \bullet	Propane gas, propyl. hydride	TR		
Hydrochloric acid2XLubricants, edible fatsHImage: Comparison of the	Mercury	TR		•
Lubricants, edible fatsHVaselineHTartaric acid (aqueous)10Tartaric acid50XyleneTR	Hydrochloric acid (aqueous)	>20		∇
VaselineHTartaric acid (aqueous)10Tartaric acid50XyleneTR				×
Tartaric acid (aqueous)10Tartaric acid50XyleneTR				-
Tartaric acid50XyleneTR				
Xylene TR •				
Sulfuric acid 98 ∇				-
	Sulturic acid	98		∇

Environmental influences.

Temperature

The cable carriers, depending on the stay type, can be used in the following temperature ranges:

Stay type	Constant temperature range
Frame stays with plastic elements	-25 °C to +100 °C
Bolted aluminium stays	-25 °C to +250 °C
Bolted tube stays (Complete steel construction, galvanized)	-25 °C to +400 °C
Tube stays (complete SX version)	-25 °C to +600 °C

Please comply with the permissible temperature range of the cables/hoses to be installed!

Chemical Influences

KABELSCHLEPP cable carriers with steel chain bands are resistant to many chemical influences.

Please note that the cable carriers made of galvanized steel and coated black are not resistant to acids. If the cable carriers are to be used in a harsh environment, we recommend the type with chain bands made from rust-and acid-resistant steel.

Dust/Chips

Protection for the power supply lines against dust, contamination or other mechanical influences is provided for our cable carriers with the aluminium cover system or steel band cover.

Stays with aluminium covers - see stay variant RMD

Steel band covers – see page 166.

Humidity/UV Influences

Steel cable carriers can also be used in humid areas or outside, since they are corrosion-resistant.

The plastics used for the dividers are UV resistant.

Explosion Protection

Cable carriers with chain bands made of steel can be used in potentially explosive atmospheres. The cable carriers must be grounded via the end connectors.

Systems of this type should be planned by our technicians. Please do get in touch with us, we would be happy to advise you.

ABELSCHLEPF

Reduce your design time.

Access our 2D and 3D data on the internet.

Accelerate your design processes with our 2D and 3D models from the CAD component libraries. New product data has been added to the **CADENAS** and **TRACEPARTS** component libraries. Download all product data from both libraries for free. Native data and all conventional export formats are available for all conventional CAD systems.

More information:

CADENAS

- Easy to connect to PDM and ERP systems
- The PARTsolutions catalogue can be easily accessed using a button in the Autodesk Inventor
- Detailed cable carrier models available

TRACEPARTS

- Most KABELSCHLEPP cable carriers are available
- Worldwide, the only CAD library with "CAA" (CATIA) partner status
- Also available on a free CD contact us to obtain it

KABELSCHLEPP and **EPLAN**.

LIFE-LINE cable database for EPLAN.

EPLAN has developed over more than 20 years into a leading E-CAD system and has become more or less established as a standard in some branches.

As a provider of continuous bending highly flexible electrical cables for cable and hose carriers, we offer you the KABELSCHLEPP LIFE-LINE cable databases as a superior tool for optimising your daily work with EPLAN.

The databases are optimized for use in EPLAN5 and for transmission according to EPLAN P8 electric.

SIMPLE

Stroke system is integrated in the chain link plate – no additional bolts are needed

RELIABLE

Optional central bolts for applications with high loads*

FLEXIBLE

Various cable separation options

LIGHT

Weight-optimized chain bands, specially coated or stainless steel

STEEL SPECIAL COATED STAINLESS STEEL

INDIVIDUAL

Different stay variants of aluminium or steel available in 1 mm section widths

SPACE SAVING

Favorable ratio of inner to outer width – no peripheral divider necessary

VARIABLE

End connectors for different connection variants

VERSATILE

Dividers of plastic or steel

EASY TO ASSEMBLE

Optional C-rail for strain relief elements fixed in the connection

LS/LSX Series

Lightweight steel cable carriers

LS Series Chain bands made of specially coated steel

LSX Series

Chain bands made of rust and acid resistant steel

Economically priced, light steel chains – with improved dynamic characteristic values

The chains are very light and yet very stable due to the weight-optimized link plate design. The unsupported length for the LS series is significantly higher as compared with plastic chains of the same size.

This makes the LS/LSX series approx. 40 % lighter than our steel chains of the S/SX series:

weight-optimized, single-part chain link plates

integrated radius and pre-tension stops – no separate bolts needed

Further details about chain design can be found on page 22.

Many stay variants with different stay cross sections make possible individual adaptation of the chain to the application. The laid cables and hoses can be optimally separated using the wide range of dividers and height separators.

A steel band cover for protection of the cables is possible on request.

Overview of dimensions

Туре	Height h _i	Clear B _{i min}	width B _{i max}	Chain width B _{k min} B _{k max}		Pitch t	Page
LS/LSX 1050	58	84	584	100	600	105	57

Dimensions are dependent on the stay variant. Multi-band chains are possible for larger widths.

* Design guidelines for central bolts and stay arrangement:

- Chain length > 4 m: central bolts **or** stay arrangement on every chain link necessary
- Chain width B_{St} > 400 mm: central bolts \boldsymbol{or} stay arrangement on every chain link necessary
- Use of support rollers: central bolts and stay arrangement on every chain link necessary

Use our free project planning service.

the power to innovate

Type **LS 1050**

Steel chain bands

Type **LSX 1050**

Stainless steel chain bands

Materials

Chain bands and end connectors: LS 1050: Steel with special coating LSX 1050: grade rust and acid resistant steel

Standard stay material: aluminium alloy* Dividers: plastic**

→ see material properties, page 50

Chain width customer-specific available in 1 mm width sections

Chain pitch 105 mm

Bend radii various standard bend radii

from 105 - 430 mm; intermediate radii upon request

* See description for the respective stay variant for details. ** Stay variant RR: Dividers of steel.

Clearance height **hj** = **58 mm** ► from page 59

Clearance height **h**j = 54 mm ► from page 66

TEEL

STEEL

WIDTHSECTIONS

🗲 1 mm 🔶

AINLESS

Clearance height **hj** = **58 mm** ► from page 61

max. hole Ø = 48 mm ► from page 67

2D/3D-Data w.kabelschlepp.de

Clearance height hi max = 200 mm ► from page 65

Design Guidelines

Rolling schematic illustration unsupported arrangement

Chain pitch t	=	105 mm
Height h _G	=	80 mm
Connection height H	=	2 KR + 120 mm
Connection length I_1	=	117 mm (see connection dimensions)

A flat and level surface is required for the cable carrier to extend and retract reliably. Under certain conditions, a support tray needs to be installed (see page 163).

Variable sizes

depending on the bend radius

Je se							Di	mension	s in mm
Bend radius	105	125	155	195	260	295	325	365	430
Bend length L_B	540	603	697	823	1027	1137	1231	1357	1561
Bend overhang Ü _B	250	270	300	340	405	440	470	510	575
Height H	330	370	430	510	640	710	770	850	980

Chain length:
$$L_k \approx \frac{L_s}{2} + L_B$$

Installation height*:
$$H_{z} = H + z$$

rounded to pitch 105 mm

Pre-tension $z \approx 6$ mm/m chain length *required clear height

Load diagramm

Unsupported length Lf and **travel length Ls without support** depending on the additional load (see design guidelines).

Load diagram for an intrinsic chain weight q_k of 3.8 kg/m.

If the intrinsic chain weight q_k of 3.8 kg/m is exceeded, the permissible additional load is reduced by the difference.

LSX 1050 material ER 1, ER 1S and LS 1050 with galvanized surface

Stay variant RS 2 – with bolted stays

- frame stay RS made of aluminium standard design
- for lightweight to medium loads
- Standard stay arrangement:* on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Chain width:	
$B_k = B_i + 16 \text{ mm}$	
$B_{k min} = 100 mm$ $B_{k max} = 400 mm$	
Stay width:	
Stay width: B _{St} = B _i	
$B_{St} = B_i$	

All chain cross sections according to sectional information in the schematic illustration.

for two band chains

depending on the chain width.

Weight of the chain bands: 3.4 kg/m (excluding stays)

۰ат

Divider system TS 0 for stay variant RS 2

The dividers are movable.

s _T	= 4 mm
a _{T min}	= 7 mm
a _{x min}	= 14 mm

* see also "Design guidelines for central bolts and stay arrangements" on page 55. TS 0

Ŵ

Example for ordering – divider system TS 0

ST

 $B_i = B_{ST}$

00

ат

3

Number of

dividers n_T

Stay variant RS 2 – with bolted stays

Divider system TS 1 for stay variant RS 2 with continuous height subdivision

The dividers are movable. Height subdivision: Aluminium profile 11 x 4 mm

ST	= 4 mm
a _{T min}	= 7 mm
a _{T max}	= 25 mm
a _{x min}	= 14 mm
n _{T min}	= 2

Example for ordering – divider system TS 1 with continuous height subdivision									
TS 1	-	VD 1	1	7					
Divider system		Height subdivision variant		Number of dividers n _T					

Divider system TS 2 for stay variant RS 2 with grid subdivision (1 mm grid)

The dividers are fixed by the height subdivision, the complete divider system is movable. Optional movable dividers (s_T = 4 mm) are available.

Height subdivision: Aluminium profile 11 x 4 mm

SŢ	= 4 mm
a _{T min}	= 7 mm
a _{x min}	= 20 mm (with height subdivision)
a _{x min}	= 14 mm (for VR 0)
n _{T min}	= 2

Please state the chambers from left to right and the dimensions a_T/a_x when ordering. Possibly enclose a sketch with dimensions.

Stay variant RV – frame stay, reinforced design

- frame stay RV made of aluminium reinforced design
- for medium to heavy loads and for large chain width
- Standard stay arrangement:* on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Chain width:			
$B_k = B_i + 16 \text{ mm}$			
$B_{k min} = 100 mm$ $B_{k max} = 600 mm$			
Stav width:			

 $B_{St} = B_i$ $B_{St} = B_k - 16 \text{ mm}$

All chain cross sections according to sectional information in the schematic illustration.

Intrinsic chain weight

for two band chains depending on the chain width.

Weight of the chain bands: 3.4 kg/m (excluding stays)

Divider system TS 0 for stay variant RV

The dividers are movable.

s _T	= 4 mm
a _{T min}	= 7 mm
a _{x min}	= 14 mm

* see also "Design guidelines for central bolts" and stay arrangements" on page 55.

Example for ordering – divider system TS 0					
TS 0	1	3			
Divider system		Number of dividers n _T			

Stay variant RV – frame stay, reinforced design

Divider system TS 1 for stay variant RV with continuous height subdivision

The dividers are movable. Height subdivision: Aluminium profile 11 x 4 mm

ST	= 4 mm	Example for ordering – divider system TS with continuous height subdivision				m TS 1		
a _{T min}	= 7 mm	Ì			-			
a _{T max}	= 25 mm		TS 1 Divider	-	VD 1 Height	1	5 Number of	
a _{x min}	= 14 mm		system		subdivision		dividers n _T	
n _{T min}	= 2				variant			

Divider system TS 2 for stay variant RV with grid subdivision (1 mm grid)

The dividers are fixed by the height subdivision, the complete divider system is movable. Optional movable dividers (s_T = 4 mm) are available.

Height subdivision: Aluminium profile 11 x 4 mm

Example for ordering – divider system TS 2

Please state the chambers from left to right and the dimensions a_T/a_X when ordering. Possibly enclose a sketch with dimensions.

Stay variant RV – frame stay, reinforced design

Divider system TS 3 for stay variant RV:

Section subdivision with partitions made of plastic or aluminium

The dividers are fixed by the partitions, the complete divider system is movable. Optional movable **twin dividers (s_T = 4 mm)** are available. Twin dividers can also be assembled at a later date.

sT= 8 mmaT min= 4 mmax min= see
partitions
dimensionsnT min= 2

Dimensions in mm

Please state the chambers from left to right and the dimensions a_T/a_X when ordering. Possibly enclose a sketch with dimensions.

Please state additional twin dividers when ordering.

Dimensions of the partitions for TS 3

Partitions made of plastic (Standard)

									5 111 11111
	a _x (Center to center distance, dividers)								
16	18	23	28	32	33	38	43	48	58
64	68	78	80	88	96	112	128	144	160
176	192	208							
4		- ax- ∩			n			n	

When using **partitions with** $a_x > 112$ mm, there must be an additional central support with a **twin divider**. Twin dividers are suitable for subsequent installation in the partition system.

Alternatively, partitions made of aluminium in 1 mm section widths (a_{x min} = 42 mm) are also available.

Stay variant RV – frame stay, reinforced design

Divider system TS 4 for stay variant RV: Half dividers and continuous height subdivision

The half dividers are movable. Height subdivision: **Aluminium profile 27 x 8 mm**. At least 2 half dividers with wrap-around on both sides (design 1) must be installed in the top and bottom chambers in the vicinity of the chain band.

ST	= 4 mm
a _{x min}	= 15 mm

Ordering – divider system TS 4 with half dividers and continuous height subdivision

Please enclose a sketch with dimensions. Please state the a_T / a_X working clearances.

Stay variant RMA – mounting frame stay

- for very large cable diameters such as with air hoses
- cables with diameters greater than the clearance height of the chain links can be routed
- installed on the inside or outside in the bend radius according to preference
- Standard stay arrangement:* on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

All chain cross sections according to sectional information in the schematic illustration.

On account of the design parameters to be observed, we ask you to contact our technical consultants.

Chain width:

B⊧ =	= Bi	+	16	mm
υ κ -	- 01		10	

B _{k min}	= 200 mm
B _{k max}	= 400 mm
B _{i1} min	= 35 mm
B _{i2} min	= 84 mm
B _{i3 min}	= 35 mm
STA	= 15 mm

Stay width:

 $B_{St} = B_i$ $B_{St} = B_k - 16 \text{ mm}$

Available passage heights

H_i = 130, 160, 200 mm

Assembly on the inside -

observe minimum bend radius (half-stayed arrangement): $H_i = 130 \text{ mm}$: $KR_{min} = 195 \text{ mm}$ $H_i = 160 \text{ mm}$: $KR_{min} = 260 \text{ mm}$ $H_i = 200 \text{ mm}$: $KR_{min} = 260 \text{ mm}$

Minimum bend radius full-stayed – please ask us about it.

The cable carrier must be supported on the chain band and not on the stays.

Intrinsic chain weight

for two band chains

depending on the chain width.

Weight of the chain bands: 3.4 kg/m (excluding stays)

* see also "Design guidelines for central bolts and stay arrangements" on page 55.

Stay variant RR – frame stay, tube design

- gentle cable support due to rotating metal tubes
- ideal when using media hoses with "soft" sheaths
- possible materials of the axles, tubes and dividers:
 - axles, tubes and dividers made of galvanized steel (standard)
 - axles, tubes and dividers made of stainless steel ER 1
- Standard stay arrangement:* on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order
- bolted stays for maximum stability

(standard)	
d dividers made of R 1	
angement:* n link. d on every chain link, en placing your order. naximum stability	KR

 $\begin{array}{ll} B_{k \ min} &= 100 \ mm \\ B_{k \ max} &= 500 \ mm \end{array}$

Stay width:

 $B_{St} = B_i$ $B_{St} = B_k - 16 \text{ mm}$

Intrinsic chain weight

for two band chains depending on the chain width.

Weight of the chain bands: 3.4 kg/m (excluding stays)

All chain cross sections according to sectional information in the schematic illustration.

Divider systems TS 0 and TS 1 for stay variant RR

The dividers are **fixed**.

ST	= 4 mm
a _{T min}	= 20 mm
a _{T max}	= 25 mm
a _{x min}	= 20 mm
n _{T min}	= 2 (for TS 1)

* see also "Design guidelines for central bolts and stay arrangements" on page 55.

Example for ordering – divider system			
	TS 0	1	2
	Divider system		Number of dividers n _T

Please state the a_T/a_X working clearances when ordering. Possibly enclose a sketch with dimensions.

Stay variant LG – hole stay made of aluminium, split design

- optimum cable guidance in the neutral bending line is possible
- drilling pattern individually adapted to the application
- high stability due to solid construction
- split design as standard for easy laying of the cables
- Standard stay arrangement:* on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability
 also available not split

Chain width:				
$B_k = \Sigma D + \Sigma c + 46 mm$				

 $\begin{array}{ll} B_{k \mbox{ min }} &= 100 \mbox{ mm} \\ B_{k \mbox{ max }} &= 600 \mbox{ mm} \end{array}$

Stay width:

 $B_{St} = \Sigma D + \Sigma c + 28 mm$ $B_i = B_{St} - 2 a_0$ $B_{St} = B_k - 18 mm$

 $\begin{array}{ll} \mathsf{D}_{\mathsf{max}} &= 48 \ \mathsf{mm} \\ \mathsf{c}_{\mathsf{min}} &= 4 \ \mathsf{mm} \\ \mathsf{a}_{0 \ \mathsf{min}} &= 14 \ \mathsf{mm} \end{array}$

All chain cross sections according to sectional information in the schematic illustration.

for two band chains

depending on the chain width.

Hole area of the hole stay is approx. 50 %

Weight of the chain bands: 3.4 kg/m (excluding stays)

* see also "Design guidelines for central bolts and stay arrangements" on page 55. Design Guidelines

Fixed point connection

Connection variant FA

Different connection variants for fixed point and driver are possible according to the drawing information. Different end connectors are needed for different connection variants.

Please state the desired connection variant according to the ordering key (see page 69).

Driver connection

Connection variant MA

Connection variant MI

Strain relief devices

The C-Rails are fixed together with the end connectors and thus do not have to be bolted separately.

Length of the C-Rail LP:

Fixed point:	$L_P = B_i$
Driver:	$L_P = B_i + 4 mm$

Dimensions C-Rail

C-Rail fixed in the end connector.

Inserting the C-Rail in the end connector.

Use our free project planning service.

Integratable C-Rail suitable for all

brackets

Material

Steel

commercially available

(slot width 11 - 12 mm).

Item-No.

3934

Ordering - cable carrier

Sb = specially coated steel

- ER 1 = stainless steel
- ER 1S = sea water resistant
 - stainless steel

More information: See material overview on page 50. Design Guidelines

Ordering – divider system

See also the sample order for the respective divider system.

Ordering – connection

Guide channels ► from page 160

Strain relief devices

► from page 167

Cables for cable carrier systems ► in our LIFE-LINE Safety Cables catalogue.

tion is stated, we supply the connection variant FAI/MAI (Standard).

- I Connector surface inside (< B_k)
- **A** Connector surface outside (> B_k)

Design Guidelines

S/SX Series

S Series

Steel cable carriers

Chain bands made of galvanized steel

SX Series

Chain bands made of rust and acid resistant steel

STAINLESS STEEL RUST-FREE

STEEL

Extremely robust and stable steel chains –

for heavy mechanical loads and harsh environmental conditions

Cable carriers tried and tested for many years with chain bands made of steel or stainless steel.

This makes the S/SX series very stable and robust:

- very stable chain link plates which each consist of two single plates.
- link design with multiple stroke system and special bolts
- bolted stay system, solid end connectors

Further details about chain design can be found on page 22.

Large unsupported lengths and **high possible additional loads** are possible due to the extremely stable design. The link design with special bolts also makes simple shortening or lengthening of the chain possible. The installation of sectional parts on the construction site is also possible easily and quickly. The individual chain sections are connected together with the link bolts.

Covering the cable carrier with an aluminium cover system or steel band cover is possible for protecting the cables against hot chips or severe contamination.

Many stay variants with different stay cross sections and stay materials make possible an individual adaptation of the chain to the application and optimum laying of the cables and hoses.

Туре	Height	Chain width		Pitch	Page
	h _i	B _{k min}	B _{k max}	t	
S/SX 0650	31	70	500	65	73
S/SX 0950	46	125	600	95	85
S/SX 1250	72	130	800	125	97
S/SX 1800	108	180	1000	180	115
S/SX 2500	183	250	1200	250	125
S/SX 3200	220	250	1500	320	131

Overview of dimensions

Dimensions are dependent on the stay variant. Multi-band chains are possible for larger widths. See page 137 for values for types S/SX 5000-7000.

Use our free project planning service.

the power to innovate

Type **S 0650**

Steel chain bands

Type **SX 0650**

Stainless steel chain bands

Μ	ate	eria	ls

Chain bands and end connectors: S 0650: Steel, zinc-plated

SX 0650: grade rust and acid resistant **steel Standard stay material: aluminium alloy***

Dividers and end pieces: plastic → see material properties, page 50

Chain width customer-specific available in 1 mm width sections

Chain pitch 65 mm

Bend radii

various **standard bend radii**

from 75 – 400 mm; intermediate radii upon request

* See description for the respective stay variant for details

Clearance height h_i = 31 mm ► from page 75

max. hole Ø = 40 mm ► from page 79

STEEL

STEEL

WIDTHSECTIONS

🗲 1 mm 🔶

STAINLESS

Clearance height hi max = 200 mm > from page 77

Clearance height **h**_i = 30 mm ► from page 80

Clearance height **hi** = 26 mm ► from page 78

LS/LSX Series

Design Guidelines

Rolling schematic illustration unsupported arrangement

Chain pitch t	=	65 mm
Height h _G	=	50 mm
Connection height H	=	2 KR + 75 mm
Connection length I ₁	=	95/25 mm (see connection dimensions)

A flat and level surface is required for the cable carrier to extend and retract reliably. Under certain conditions, a support tray needs to be installed (see page 163).

Variable sizes

depending on the bend radius

Bend radius	75	95	115	125	135	145	155	175	200	250		400
Bend length L _B	496	558	621	653	684	716	747	810	888	1045	1202	1516
Bend overhang Ü _B	230	250	270	280	290	300	310	330	355	405	455	555
Height H	225	265	305	325	345	365	385	425	475	575	675	875

Chain length:
$$L_k \approx \frac{L_s}{2} + L_B$$

Installation height*:				
H ₇	= H + z			

rounded to pitch 65 mm

Pre-tension $z \approx 10$ mm/m chain length *required clear height

Load diagramm

Unsupported length Lf and **travel length Ls without support** depending on the additional load (see design guidelines).

Load diagram for an intrinsic chain weight q_k of 4.5 kg/m.

If the intrinsic chain weight q_k of 4.5 kg/m is exceeded, the permissible additional load is reduced by the difference.

For circular operations, combinations of KR/RKR are possible. Please contact us for details.

SX 0650 material ER 1 / ER 1S

Stay variant RS 2 – with bolted stays

- frame stay RS made of aluminium standard design
- for lightweight to medium loads
- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Chain width:
$B_k = B_i + 31 \text{ mm}$
$B_{k \min} = 100 \text{ mm}$ $B_{k \max} = 400 \text{ mm}$
Stay width:

$B_{St} = B_i + 16 \text{ mm}$	
$B_{St} = B_k - 15 \text{ mm}$	

All chain cross sections according to sectional information in the schematic illustration.

The peripheral dividers are an integral part of the stay system and must not be ordered separately.

Intrinsic chain weight

for two band chains

depending on the chain width.

Weight of the chain bands: 3.6 kg/m (excluding stays)

Divider system TS 0 for stay variant RS 2

s _T	= 3 mm
a _{T min}	= 11.5 mm
a _{x min}	= 13 mm

Stay variant RS 1 – with a detachable stay

- frame stay RS made of aluminium solid design
- for lightweight to medium loads

Standard opening options:

Outside: The cable carrier can be opened quickly and easily simply by rotating the stays through 90°. **Inside:** Screwed stays

Optional: Bolted on the outside and opening inwards, please state when ordering.

Standard stay arrangement:

on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.

Chain width:

 $B_k = B_i + 35 \text{ mm}$

 $\begin{array}{ll} B_{k \ min} &= 100 \ mm \\ B_{k \ max} &= 300 \ mm \end{array}$

Stay width:

 $B_{St} = B_i + 20 \text{ mm}$ $B_{St} = B_k - 15 \text{ mm}$

Intrinsic chain weight

for two band chains

depending on the chain width.

Weight of the chain bands: 3.6 kg/m (excluding stays)

All chain cross sections according to sectional information in the schematic illustration.

The end pieces are an integral part of the stay system and must not be ordered separately.

Divider system TS 0 for stay variant RS 1

SŢ	= 3 mm
a _{T min}	= 11.5 mm
a _{x min}	= 13 mm

Stay variant RMA – mounting frame stay

- for very large cable diameters such as with air hoses.
- cables with diameters greater than the clearance height of the chain links can be routed
- installed on the inside or outside in the bend radius according to preference
- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Chain width:

Вk	=	Bi	+	45	mm	

 $\begin{array}{ll} B_{k \ min} &= 200 \ mm \\ B_{k \ max} &= 400 \ mm \end{array}$

Stay width:

 $B_{St} = B_i + 30 \text{ mm}$ $B_{St} = B_k - 15 \text{ mm}$

Available passage heights: H_i = 130, 160, 200 mm

Assembly on the inside – observe minimum bend radius (half-stayed arrangement): H_i = 130 mm: KR_{min} = 175 mm H_i = 160 mm: KR_{min} = 220 mm H_i = 200 mm: KR_{min} = 300 mm

Minimum bend radius full-stayed – please ask us about it.

The cable carrier must be supported on the chain band and not on the stays.

Intrinsic chain weight

for two band chains depending on the chain width.

Weight of the chain bands: 3.6 kg/m (excluding stays)

Design Guidelines

All chain cross sections according to the section information in the schematic illustration.

On account of the design parameters to be observed, we ask you to contact our technical consultants.

Stay variant RR – frame stay, tube design

- gentle cable support due to rotating metal tubes
- ideal when using media hoses with "soft" sheaths
- possible materials of the axles, tubes and dividers:
 - axles and tubes, galvanized steel with plastic dividers (standard)
 - axles, tubes and dividers made of galvanized steel
 - axles, tubes and dividers made of stainless steel ER 1, ER 1S

Standard stay arrangement:

on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.

bolted stays for maximum stability

Chain width:				
$B_k = B_i + 31 \text{ mm}$				

 $\begin{array}{ll} B_{k \ min} &= 100 \ mm \\ B_{k \ max} &= 400 \ mm \end{array}$

Stay width:

 $B_{St} = B_i + 16 \text{ mm}$ $B_{St} = B_k - 15 \text{ mm}$

Intrinsic chain weight

for two band chains

depending on the chain width.

Weight of the chain bands: 3.6 kg/m (excluding stays)

All chain cross sections according to sectional information in the schematic illustration.

The peripheral dividers are an integral part of the stay system and must not be ordered separately.

Divider systems TS 0 and TS 1 for stay variant RR

The dividers are **fixed**.

- TS 0: without height subdivision
- **TS 1:** with continuous centric height subdivision

s _T	= 4 mm
a _{T min}	= 20 mm
a _{x min}	= 25 mm

Example for ordering – divider system

Please state the dimensions a_T/a_x when ordering. Possibly enclose a sketch with dimensions.

Stay variant LG – hole stay made of aluminium, split design

- optimum cable guidance in the neutral bending line is possible
- drilling pattern individually adapted to the application
- high stability due to solid construction
- split design as standard for easy laying of the cables
- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability
 also available not split

Chain width:	
$B_k = \Sigma D + \Sigma c + 35$	mm

$\begin{array}{ll} B_{k \mbox{ min }} &= 70 \mbox{ mm} \\ B_{k \mbox{ max }} &= 500 \mbox{ mm} \end{array}$

Stay width:

$$\begin{split} B_{St} &= \Sigma \ D + \Sigma \ c + 18 \ mm \\ B_i &= B_{St} - 2 \ a_0 \\ B_{St} &= B_k - 17 \ mm \end{split}$$

 $\begin{array}{ll} \mathsf{D}_{\mathsf{max}} &= 40 \ \mathsf{mm}\\ \mathsf{c}_{\mathsf{min}} &= 4 \ \mathsf{mm}\\ \mathsf{a}_{0 \ \mathsf{min}} &= 9 \ \mathsf{mm} \end{array}$

All chain cross sections according to sectional information in the schematic illustration.

Intrinsic chain weight

for two band chains

depending on the chain width.

Hole area of the hole stay is approx. 50 %

Weight of the chain bands: 3.6 kg/m (excluding stays)

Stay variant RMD – covered cable carrier, STEEL-TUBE

- aluminium cover system for protecting the cables and hoses
- for applications where chips or severe contamination occur
- bolted aluminium cover for maximum stability

Steel band covers are also available as light-weight, economically priced alternatives to covering with the aluminium cover system, see page 166.

Chain width:

 $B_k = B_i + 35 \text{ mm}$

 $\begin{array}{ll} B_{k \mbox{ min }} &= 100 \mbox{ mm} \\ B_{k \mbox{ max }} &= 500 \mbox{ mm} \end{array}$

Stay width:

 $B_{St} = B_i + 20 \text{ mm}$ $B_{St} = B_k - 15 \text{ mm}$

Minimum bend radius KR_{min} = 115 mm

Intrinsic chain weight

for two band chains depending on the chain width.

Weight of the chain bands: 3.6 kg/m (excluding stays)

All chain cross sections according to sectional information in the schematic illustration.

The peripheral dividers are an integral part of the stay system and must not be ordered separately.

Stay variant RMD – covered cable carrier, STEEL-TUBE

Divider systems TS 0 and TS 1 for stay variant RMD

The dividers are **movable**.

TS 0: without height subdivision **TS 1:** with continuous centric

height subdivision

ST	= 3 mm
a _{T min}	= 11.5 mm
a _{x min}	= 13 mm

Design Guidelines

Fixed point connection

Connection variant FA

Connection variant FI

Connection variant FH

Connection variant **FK**

Different connection variants for fixed point and driver are possible according to the drawing information and are realized by different assembly of the connecting pieces.

The connection variants can also be changed at a later date if required.

Please state the desired connection variant according to the ordering key (see page 84).

Driver connection

Connection variant MA

Connection variant MI

Connection variant MH

Connection variant MK

Ordering – cable carrier

Chain band materials:

- St = zinc-plated steel
- ER 1 = stainless steel
- ER 1S = sea water resistant stainless steel
- ER 2 = high-strength stainless steel More information:

See material overview on page 50.

Ordering – divider system

See also the sample order for the respective divider system.

Ordering – connection

If no order designation for the connection is stated, we supply the connection variant **FAI/MAI (Standard)**.

Connection surface

- I Connector surface inside (< B_k)
 A Connector surface outside (> B_k)
- $A = Connector surface outside (> <math>B_k$)

The connecting surfaces on the driver and fixed point can be be mounted on the outside or inside according to preference.

The connection type can easily be altered at a later date.

Guide channels ► from page 160

Cables for cable carrier systems in our LIFE-LINE Safety Cables catalogue.

Use our free project planning service.

the power to innovate

Type **S 0950**

. ./

Steel chain bands

Type SX 0950

Stainless steel chain bands

Materials

Chain bands and end connectors: S 0950: Steel, zinc-plated SX 0950: grade rust and acid resistant steel

Standard stay material: aluminium alloy* Dividers and end pieces: plastic

→ see material properties, page 50

Chain width customer-specific available in 1 mm width sections

Chain pitch 95 mm

Bend radii various standard bend radii

from 125 - 600 mm; intermediate radii upon request

* See description for the respective stay variant for details

Clearance height **h**i = 46 mm ► from page 87

Clearance height **h**_i = 42 mm ► from page 91

STEEL

STAINLESS STEEL

WIDTHSECTIONS

🗲 1 mm 🔶

Clearance height **h**i = 43 mm ► from page 89

max. hole Ø = 48 mm ► from page 92

2D/3D-Data v.kabelschlepp.de

Clearance height hi = 40 mm ► from page 90

Clearance height hi = 44 mm ► from page 93

Design Guidelines

Rolling schematic illustration unsupported arrangement

Chain pitch t	=	95 mm
Height h _G	=	68 mm
Connection height H	=	2 KR + 102 mm
Connection length I_1	=	125/34 mm (see connection dimensions)

A flat and level surface is required for the cable carrier to extend and retract reliably. Under certain conditions, a support tray needs to be installed (see page 163).

Variable sizes

depending on the bend radius

									Dimensio	ns in mm
Bend radius	125	140	170	200	260	290	320	350	410	600
Bend length LB	773	820	914	1008	1197	1291	1385	1480	1668	2264
Bend overhang Ü _B	350	365	395	425	485	515	545	575	635	825
Height H	352	382	442	502	622	682	742	802	922	1302

Chain length:
$$L_k \approx \frac{L_s}{2} + L_B$$

Installation height*:				
н —	H + 7			

rounded to pitch 95 mm

Pre-tension $z \approx 10$ mm/m chain length *required clear height

Load diagramm

Unsupported length Lf and **travel length Ls without support** depending on the additional load (see design guidelines).

Load diagram for an intrinsic chain weight q_k of 7.6 kg/m.

If the intrinsic chain weight q_k of 7.6 kg/m is exceeded, the permissible additional load is reduced by the difference.

For circular operations, combinations of KR/RKR are possible. Please contact us for details.

Stay variant RS 2 – with bolted stays

- frame stay RS made of aluminium standard design
- for lightweight to medium loads
- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Chain width:
$B_k = B_i + 37 \text{ mm}$
B _{k min} = 150 mm B _{k max} = 400 mm

Stay width:		
$B_{St} = B_i + 18 \text{ mm}$		
$B_{St} = B_k - 19 \text{ mm}$		

All chain cross sections according to sectional information in the schematic illustration.

The peripheral dividers are an integral part of the stay system and must not be ordered separately.

Intrinsic chain weight

for two band chains depending on the chain width.

Weight of the chain bands: 7.2 kg/m (excluding stays)

Divider system TS 0 for stay variant RS 2

s _T	= 4 mm
a _{T min}	= 12 mm
a _{x min}	= 14 mm

Example for ordering - divider system TS 0				
TS 0	1	2		
Divider system		Number of dividers n _T		

Stay variant RS 1 – with a detachable stay

- frame stay RS made of aluminium standard design
- for lightweight to medium loads

Standard opening options:

Outside: The cable carrier can be opened quickly and easily simply by rotating the stays through 90°. **Inside:** Screwed stays

Optional: Bolted on the outside and opening inwards, please state when ordering.

Standard stay arrangement:

on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.

Chain width:

 $B_k = B_i + 43 \text{ mm}$

 $\begin{array}{ll} B_{k \mbox{ min }} &= 150 \mbox{ mm} \\ B_{k \mbox{ max }} &= 300 \mbox{ mm} \end{array}$

Stay width:

 $B_{St} = B_i + 24 \text{ mm}$ $B_{St} = B_k - 19 \text{ mm}$

Intrinsic chain weight

for two band chains depending on the chain width.

Weight of the chain bands: 7.2 kg/m (excluding stays)

All chain cross sections according to sectional information in the schematic illustration.

The end pieces are an integral part of the stay system and must not be ordered separately.

Divider system TS 0 for stay variant RS 1

s _T	= 4 mm
a _{T min}	= 12 mm
a _{x min}	= 14 mm

Stay variant RM – frame stay, solid design

- frame stay RM made of aluminium solid design
- for heavy loads maximum chain widths possible
- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Chain width:
$B_k = B_i + 37 \text{ mm}$

 $B_{k \text{ min}} = 125 \text{ mm}$ $B_{k \text{ max}} = 600 \text{ mm}$

Stay width:

 $B_{St} = B_i + 18 \text{ mm}$ $B_{St} = B_k - 19 \text{ mm}$

All chain cross sections according to sectional information in the schematic illustration.

The peripheral dividers are an integral part of the stay system and must not be ordered separately.

Intrinsic chain weight

for two band chains depending on the chain width.

Weight of the chain bands: 7.2 kg/m (excluding stays)

Divider system TS 0 for stay variant RM

s _T	= 4 mm
a _{T min}	= 10 mm
a _{x min}	= 14 mm

Stay variant RMR – frame stay with plastic roller system

- gentle cable support due to rotatable plastic rollers
- ideal when using media hoses with "soft" sheaths
- stay profile made of aluminium rollers made of plastic
- plastic dividers in roller version
- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Chain width:

 $B_k = B_i + 42 \text{ mm}$

 $B_{k \text{ min}} = 150 \text{ mm}$ $B_{k \text{ max}} = 600 \text{ mm}$

Stay width:

 $B_{St} = B_i + 23 \text{ mm}$ $B_{St} = B_k - 19 \text{ mm}$

All chain cross sections according to the section information in the schematic illustration.

Intrinsic chain weight

for two band chains

depending on the chain width.

Weight of the chain bands: 7.2 kg/m (excluding stays)

Divider system TS 0 for stay variant RMR

The standard dividers are **fixed**.

Moveable dividers ($s_T = 4 \text{ mm}$) can be used as an option. Please specify when placing your order.

d _R	= 10 mm
a _{T min}	= 11.5 mm
a _{x min}	= 37 mm

Please state the dimensions a_T/a_X when ordering. Possibly enclose a sketch with dimensions.

Stay variant RR – frame stay, tube design

- gentle cable support due to rotating metal tubes
- ideal when using media hoses with "soft" sheaths
- possible materials of the axles, tubes and dividers:
 - axles, galvanized steel with plastic dividers (Standard)
 - axles and dividers made of galvanized steel
 - axles and dividers made of stainless steel ER 1, ER 1S
- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Chain width:	
$B_k = B_i + 35 \text{ mm}$	

 $\begin{array}{ll} B_{k \mbox{ min }} &= 150 \mbox{ mm} \\ B_{k \mbox{ max }} &= 500 \mbox{ mm} \end{array}$

Stay width:

 $B_{St} = B_i + 16 \text{ mm}$ $B_{St} = B_k - 19 \text{ mm}$

Intrinsic chain weight

for two band chains

depending on the chain width.

Weight of the chain bands: 7.2 kg/m (excluding stays)

All chain cross sections according to sectional information in the schematic illustration.

The peripheral dividers are an integral part of the stay system and must not be ordered separately.

Divider systems TS 0 and TS 1 for stay variant RR

The dividers are **fixed**.

- TS 0: without height subdivision
- **TS 1:** with continuous centric height subdivision

SŢ	= 4 mm
a _{T min}	= 20 mm
a _{x min}	= 20 mm

Example for ordering - divider system TS 0 / 2 Divider system Number of dividers n_T

Please state the dimensions a_T/a_X when ordering. Possibly enclose a sketch with dimensions.

Stay variant LG – hole stay made of aluminium, split design

- optimum cable guidance in the neutral bending line is possible
- drilling pattern individually adapted to the application
- high stability due to solid construction
- split design as standard for easy laying of the cables
- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability
 also available not split

Chain width:	
$B_k = \Sigma \; D + \Sigma \; c + 43$	mm

 $B_{k \text{ min}} = 125 \text{ mm}$ $B_{k \text{ max}} = 600 \text{ mm}$

Stay width:

$$\begin{split} B_{St} &= \Sigma \ D + \Sigma \ c + 22 \ mm \\ B_i &= B_{St} - 2 \ a_0 \\ B_{St} &= B_k - 21 \ mm \end{split}$$

 $\begin{array}{ll} \mathsf{D}_{\mathsf{max}} &= 48 \ \mathsf{mm} \\ \mathsf{c}_{\mathsf{min}} &= 4 \ \mathsf{mm} \\ \mathsf{a}_{0 \ \mathsf{min}} &= 11 \ \mathsf{mm} \end{array}$

Intrinsic chain weight

for two band chains

depending on the chain width.

Hole area of the hole stay is approx. 50 %

Weight of the chain bands: 7.2 kg/m (excluding stays)

All chain cross sections according to sectional information in the schematic illustration.

Stay variant RMD – covered cable carrier, STEEL-TUBE

- aluminium cover system for protecting the cables and hoses
- for applications where chips or severe contamination occur
- bolted aluminium cover for maximum stability

Steel band covers are also available as light-weight, economically priced alternatives to covering with the aluminium cover system, see page 166.

Chain width: $B_k = B_i + 37 \text{ mm}$

 $\begin{array}{ll} B_{k \mbox{ min }} &= 125 \mbox{ mm} \\ B_{k \mbox{ max }} &= 600 \mbox{ mm} \end{array}$

Stay width:

 $B_{St} = B_i + 18 \text{ mm}$ $B_{St} = B_k - 19 \text{ mm}$

Minimum bend radius KR_{min} = 170 mm

Intrinsic chain weight

for two band chains depending on the chain width.

Weight of the chain bands: 7.2 kg/m (excluding stays)

All chain cross sections according to sectional information in the schematic illustration.

The peripheral dividers are an integral part of the stay system and must not be ordered separately.

Divider system TS 0 for stay variant RMD

SŢ	= 4 mm
a _{T min}	= 12 mm
a _{x min}	= 14 mm

Fixed point connection

Connection variant FA

Connection variant FI

Connection variant FH

Connection variant **FK**

Different connection variants for fixed point and driver are possible according to the drawing information and are realized by different assembly of the connecting pieces.

The connection variants can also be changed at a later date if required.

Please state the desired connection variant according to the ordering key (see page 96).

Driver connection

Connection variant MA

Connection variant MI

Connection variant MH

Connection variant MK

Ordering – cable carrier

Chain band materials:

- St = zinc-plated steel
- ER 1 = stainless steel
- ER 1S = sea water resistant stainless steel
- ER 2 = high-strength stainless steel
- More information: See material overview on page 50.

Ordering – divider system

See also the sample order for the respective divider system.

Ordering – connection

If no order designation for the connection is stated, we supply the connection variant **FAI/MAI (Standard)**.

Connection surface

- I Connector surface inside (< B_k)
 A Connector surface outside (> B_k)
- $A = Connector surface outside (> <math>B_k$)

The connecting surfaces on the driver and fixed point can be be mounted on the outside or inside according to preference.

The connection type can easily be altered at a later date.

Guide channels ► from page 160

Cables for cable carrier systems in our LIFE-LINE Safety Cables catalogue.

Use our free project planning service.

the power to innovate

Type **S 1250**

Steel chain bands

Type **SX 1250**

Stainless steel chain bands

Materials

Chain bands and end connectors: **S 1250:** Steel, zinc-plated

SX 1250: grade rust and acid resistant **steel Standard stay material: aluminium alloy***

Dividers and end pieces: plastic → see material properties, page 50

Chain width

customer-specific available in 1 mm width sections

Chain pitch

125 mm

Bend radii various standard bend radii

from 145 – 1000 mm; intermediate radii upon request

* See description for the respective stay variant for details

Also available with straight link plates: Type S/SX 1252 – please contact us!

Clearance height h_i = 72 mm ► from page 99

Clearance height hi = 66 mm ► from page 108

FFFI.

WIDTHSECTIONS

🔶 1 mm 🔶

AINLESS EEL

Clearance height hi = 72 mm from page 101

Clearance height hi = 66 mm ► from page 109

2D/3D-Data w.kabelschlepp.de

Clearance height h_i = 69 mm ► from page 105

max. hole Ø = 74 mm ► from page 110

Clearance height hi max = 200 mm from page 107

Rolling schematic illustration unsupported arrangement

Chain pitch t	=	125 mm
Height h _G	=	94 mm
Connection height H	=	2 KR + 141 mm
Connection length I_1	=	155/47 mm (see connection dimensions)

A flat and level surface is required for the cable carrier to extend and retract reliably. Under certain conditions, a support tray needs to be installed (see page 163).

Variable sizes

depending on the bend radius

Bend radius	145	200	220	260	300	340	380	420	460	500	540	600	1000
Bend length L _B	955	1128	1191	1317	1442	1568	1694	1820	1945	2071	2196	2385	3640
Bend overhang Ü _B	442	497	517	557	597	637	677	717	757	797	837	897	1297
Height H	431	541	581	661	741	821	901	981	1061	1141	1221	1341	2141

Chain length:
$$L_k \approx \frac{L_s}{2} + L_B$$

Inst	alla	tion	hei	ght*	
H-	=	Нч	- Z		

rounded to pitch 125 mm

Pre-tension $z \approx 10$ mm/m chain length *required clear height

Load diagramm

Unsupported length Lf and travel length Ls without support depending on the additional load (see design guidelines).

Load diagram for an intrinsic chain weight qk of 13 kg/m.

If the intrinsic chain weight q_k of 13 kg/m is exceeded, the permissible additional load is reduced by the difference.

For circular operations, combinations of KR/RKR are possible. Please contact us for details.

SX 1250 material ER 1 / ER 1S

Stay variant RS 2 – with bolted stays

- frame stay RS made of aluminium standard design
- for lightweight to medium loads
- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Chain width:					
$B_k = B_i + 44 \text{ mm}$					
B _{k min} = 200 mm B _{k max} = 500 mm					
Stay width:					
$B_{St} = B_i + 20 \text{ mm}$					
$B_{St} = B_k - 24 \text{ mm}$					

All chain cross sections according to sectional information in the schematic illustration.

The peripheral dividers are an integral part of the stay system and must not be ordered separately.

Intrinsic chain weight

for two band chains depending on the chain width.

Weight of the chain bands: 12 kg/m (excluding stays)

Divider system TS 0 for stay variant RS 2

s _T	= 5 mm
a _{T min}	= 12.5 mm
a _{x min}	= 15 mm

Example f - divider s		
TS 0	1	2
Divider		Number of

Stay variant RS 1 – with a detachable stay

- frame stay RS made of aluminium standard design
- for lightweight to medium loads

Standard opening options:

Outside: The cable carrier can be opened quickly and easily simply by rotating the stays through 90°. **Inside:** Screwed stays

Optional: Bolted on the outside and opening inwards, please state when ordering.

Standard stay arrangement:

on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.

Chain width: $B_k = B_i + 48 \text{ mm}$

 $\begin{array}{ll} B_{k \ min} &= 200 \ mm \\ B_{k \ max} &= 400 \ mm \end{array}$

Stay width:

 $B_{St} = B_i + 24 \text{ mm}$ $B_{St} = B_k - 24 \text{ mm}$

Intrinsic chain weight

for two band chains

depending on the chain width.

Weight of the chain bands: 12 kg/m (excluding stays)

All chain cross sections according to sectional information in the schematic illustration.

The end pieces are an integral part of the stay system and must not be ordered separately.

Divider system TS 0 for stay variant RS 1

s _T	= 5 mm
a _{T min}	= 12.5 mm
a _{x min}	= 15 mm

Example for ordering - divider system TS 0				
TS 0	1	2		
Divider system		Number of dividers n _T		

Stay variant RV – frame stay, reinforced design

- frame stay RV made of aluminium reinforced design
- for medium to heavy loads and for large chain width
- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Chain width:
$B_k = B_i + 46 \text{ mm}$
$B_{k \min} = 200 \text{ mm}$

 $B_{k max} = 600 mm$

Stay width:

 $B_{St} = B_i + 22 \text{ mm}$ $B_{St} = B_k - 24 \text{ mm}$

All chain cross sections according to sectional information in the schematic illustration.

The peripheral dividers are an integral part of the stay system and must not be ordered separately.

Intrinsic chain weight

for two band chains depending on the chain width.

Weight of the chain bands: 12 kg/m (excluding stays)

Divider system TS 0 for stay variant RV

s _T	= 6 mm
a _{T min}	= 13 mm
a _{x min}	= 16 mm

	Example f - divider s		
+	TS 0	1	2
	Divider system		Number of dividers n _T

Stay variant RV – frame stay, reinforced design

Divider system TS 1 for stay variant RV with continuous height subdivision

6 Number of dividers nt

s _T	= 6 mm	Example for ordering – divide with continuous height subdivision				
a _{T min}	= 13 mm		-			VISION
a _{x min}	= 16 mm	TS 1 Divider	-	VD 1 Height	/	Numb
n _{T min}	= 2	system		subdivision		divide
				variant		

Divider system TS 2 for stay variant RV with grid subdivision (1 mm grid)

The dividers are fixed by the height subdivision, the complete divider system is movable. Optional movable **dividers** ($s_T = 6 \text{ mm}$) are available.

Height subdivision: Aluminium profile 11 x 4 mm

Please state the chambers from left to right and the dimensions a_T/a_X when ordering. Possibly enclose a sketch with dimensions.

Stay variant RV – frame stay, reinforced design

Divider system TS 3 for stay variant RV:

Section subdivision with partitions made of plastic or aluminium

The dividers are fixed by the partitions, the complete divider system is movable. Optional movable **twin dividers (s_T = 4 mm)** are available. Twin dividers can also be assembled at a later date.

Dimensions without VR 0 chamber at the edge. The outer dividers replace the peripheral dividers.

ST	= 8 mm
a _{T min}	= 4 mm
a _{x min}	= see partitions dimensions
n _{T min}	= 2

Example for ordering – divider system TS 3 with partitions made of plastic

TS 3]-	K 1	-	VR 0	1	34
	-	K 2	-	VR 1	1	38
Divider system		Chamber		Variant of the height subdivision in chamber		Installation interval (mm)

Please state the chambers from left to right and the dimensions a_T/a_X when ordering. Possibly enclose a sketch with dimensions.

Please state additional twin dividers when ordering.

Dimensions of the partitions for TS 3

Partitions made of plastic (Standard)

When using **partitions with** $a_x > 112$ mm, there must be an additional central support with a **twin divider**. Twin dividers are suitable for subsequent installation in the partition system.

Alternatively, partitions made of aluminium in 1 mm section widths $(a_{x min} = 42 mm)$ are also available.

Stay variant RV – frame stay, reinforced design

Divider system TS 4 for stay variant RV: Half dividers and continuous height subdivision

The half dividers are movable. Height subdivision: **Aluminium profile 27 x 8 mm**. At least 2 half dividers with wrap-around on both sides (design 1) must be installed in the top and bottom chambers in the vicinity of the chain band.

ST	= 4 mm
a _{x min}	= 15 mm

Ordering – divider system TS 4 with half dividers and continuous height subdivision

Please enclose a sketch with dimensions. Please state the dimensions a_T / a_X .

Stay variant RM – frame stay, solid design

- frame stay RM made of aluminium solid design
- for heavy loads maximum chain widths possible
- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Chain width:
$B_k = B_i + 49 \text{ mm}$

 $B_{k \min} = 200 \text{ mm}$ $B_{k max} = 800 mm$

Stay width:

 $B_{St} = B_i + 25 \text{ mm}$ $B_{St} = B_k - 24 \text{ mm}$

All chain cross sections according to sectional information in the schematic illustration.

The peripheral dividers are an integral part of the stay system and must not be ordered separately.

Intrinsic chain weight

for two band chains

depending on the chain width.

Weight of the chain bands: 12 kg/m (excluding stays)

Divider system TS 0 for stay variant RM

The dividers are **movable**.

s _T	= 5 mm
a _{T min}	= 17.5 mm
a _{x min}	= 20 mm

2

Number of

dividers n_T

Stay variant RM – frame stay, solid design

Divider system TS 5 for stay variant RM

Hole stay inserts made of plastic – split design

Chain width:		
$B_{K} = \Sigma n_{p} \cdot B_{p} + A_{m}$	25	mm

 n_p = number of hole stay inserts B_p = width of the hole stay inserts

$B_{ST} = \Sigma n_p \cdot B_p + 1 mm$	Stay width:	J
	$B_{ST} = \Sigma n_p \cdot B_p + 1 mm$	

Hole diameter D	Width B
10	15
15	20
20	25
25	30
30	35
40	45
50	55
D:	

Dimensions in mm

The hole stay inserts can be combined in any way.

Example for ordering – divider system TS 5

TS 5	1	50	-	30	-	25	-	40
Divider system		Hole diameter D ₁		Hole diameter D ₂		Hole diameter D ₃		Hole diameter D ₄

Please state the hole diameters and positions from left to right when ordering. Possibly enclose a sketch with dimensions.

Stay variant RMA – mounting frame stay

- for very large cable diameters such as with air hoses.
- cables with diameters greater than the clearance height of the chain links can be routed
- installed on the inside or outside in the bend radius according to preference
- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Chain width:

 $B_k = B_i + 44 \text{ mm}$

Stay width:

 $B_{St} = B_i + 20 \text{ mm}$ $B_{St} = B_k - 24 \text{ mm}$

Available passage heights:

H_i = 130, 160, 200 mm

Assembly on the inside -

observe minimum bend radius (half-stayed arrangement): H_i = 130 mm: KR_{min} = 200 mm H_i = 160 mm: KR_{min} = 260 mm H_i = 200 mm: KR_{min} = 300 mm

Minimum bend radius full-stayed – please ask us about it.

The cable carrier must be supported on the chain band and not on the stays.

Intrinsic chain weight

for two band chains depending on the chain width.

Weight of the chain bands: 12 kg/m (excluding stays)

All chain cross sections according to sectional information in the schematic illustration.

The peripheral dividers are an integral part of the stay system and must not be ordered separately.

On account of the design parameters to be observed, we ask you to contact our technical consultants.

Stay variant RMR – frame stay with plastic roller system

- gentle cable support due to rotatable plastic rollers
- ideal when using media hoses with "soft" sheaths
- stay profile made of aluminium rollers made of plastic
- plastic dividers in roller version
- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Chain	width:
-------	--------

 $B_k = B_i + 47 \text{ mm}$

 $\begin{array}{ll} B_{k \mbox{ min }} &= 200 \mbox{ mm} \\ B_{k \mbox{ max }} &= 800 \mbox{ mm} \end{array}$

Stay width:

 $B_{St} = B_i + 24 \text{ mm}$ $B_{St} = B_k - 23 \text{ mm}$

Intrinsic chain weight

for two band chains depending on the chain width.

Weight of the chain bands: 12 kg/m (excluding stays)

All chain cross sections according to the section information in the schematic illustration.

Divider system TS 0 for stay variant RMR

The standard dividers are **fixed**.

Moveable dividers ($s_T = 4 \text{ mm}$) can be used as an option. Please state when ordering.

d _R	= 10 mm
a _{T min}	= 11.5 mm
a _{x min}	= 37 mm

Please state the dimensions a_T/a_X when ordering. Possibly enclose a sketch with dimensions.

Stay variant RR – frame stay, tube design

- gentle cable support due to rotating metal tubes
- ideal when using media hoses with "soft" sheaths
- possible materials of the axles, tubes and dividers:
 - axles and tubes, galvanized steel with plastic dividers (Standard)
 - axles, tubes and dividers made of galvanized steel
 - axles, tubes and dividers made of stainless steel ER 1, ER 1S

Standard stay arrangement:

on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.

■ bolted stays for maximum stability

Chain width:

 $B_k = B_i + 40 \text{ mm}$

 $\begin{array}{ll} B_{k \ min} &= 200 \ mm \\ B_{k \ max} &= 600 \ mm \end{array}$

Stay width:

 $B_{St} = B_i + 16 \text{ mm}$ $B_{St} = B_k - 24 \text{ mm}$

Intrinsic chain weight

for two band chains depending on the chain width.

Weight of the chain bands: 12 kg/m (excluding stays)

All chain cross sections according to sectional information in the schematic illustration.

The peripheral dividers are an integral part of the stay system and must not be ordered separately.

Divider systems TS 0 and TS 1 for stay variant RR

The dividers are fixed.

- TS 0: without height subdivision
- **TS 1:** with continuous centric height
 - subdivision

s _T	= 4 mm
a _{T min}	= 30 mm
a _{x min}	= 30 mm

Example for ordering – divider system

Please state the dimensions a_T/a_X when ordering. Possibly enclose a sketch with dimensions.

Stay variant LG – hole stay made of aluminium, split design

- optimum cable guidance in the neutral bending line is possible
- drilling pattern individually adapted to the application
- high stability due to solid construction
- split design as standard for easy laying of the cables
- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability
 also available not split

Chain width:		
$B_k = \Sigma D + \Sigma c + 48 mm$		

$\begin{array}{ll} B_{k \mbox{ min }} &= 130 \mbox{ mm} \\ B_{k \mbox{ max }} &= 800 \mbox{ mm} \end{array}$

Stay width:

 $B_{St} = \Sigma D + \Sigma c + 22 mm$ $B_i = B_{St} - 2 a_0$ $B_{St} = B_k - 26 mm$

 $\begin{array}{ll} \mathsf{D}_{\mathsf{max}} &= 74 \ \mathsf{mm}\\ \mathsf{c}_{\mathsf{min}} &= 4 \ \mathsf{mm}\\ \mathsf{a}_{0 \ \mathsf{min}} &= 11 \ \mathsf{mm} \end{array}$

All chain cross sections according to sectional information in the schematic illustration.

Intrinsic chain weight

for two band chains

depending on the chain width.

Hole area of the hole stay is approx. 50 %

Weight of the chain bands: 12 kg/m (excluding stays)

Stay variant RMD – covered cable carrier, STEEL-TUBE

- aluminium cover system for protecting the cables and hoses
- for applications where chips or severe contamination occur
- bolted aluminium cover for maximum stability

Steel band covers are also available as light-weight, economically priced alternatives to covering with the aluminium cover system, see page 166.

Chain width: $B_k = B_i + 49 \text{ mm}$

 $B_{k \min} = 150 \text{ mm}$ $B_{k \max} = 800 \text{ mm}$

Stay width:

 $B_{St} = B_i + 25 mm$ $B_{St} = B_k - 24 mm$

Minimum bend radius KR_{min} = 200 mm

Intrinsic chain weight

for two band chains depending on the chain width.

Weight of the chain bands: 12 kg/m (excluding stays)

All chain cross sections according to sectional information in the schematic illustration.

The peripheral dividers are an integral part of the stay system and must not be ordered separately.

Divider system TS 0 for stay variant RMD

The dividers are **movable**.

s _T	= 5 mm
a _{T min}	= 17.5 mm
a _{x min}	= 20 mm

Fixed point connection

Connection variant FA

Connection variant FI

Connection variant FH

Connection variant FK

Different connection variants for fixed point and driver are possible according to the drawing information and are realized by different assembly of the connecting pieces. The connection variants can also be changed at a later date if required.

Please state the desired connection variant according to the ordering key (see page 114).

Use our free project planning service.

Driver connection

Connection variant MI

Connection variant MH

Connection variant MK

Design Guidelines

Ordering – cable carrier

Chain band materials:

- St = zinc-plated steel
- ER 1 = stainless steel
- ER 1S = sea water resistant stainless steel
- ER 2 = high-strength stainless steel
- More information: See material overview on page 50.

Ordering – divider system

See also the sample order for the respective divider system.

Ordering – connection

If no order designation for the connection is stated, we supply the connection variant **FAI/MAI (Standard)**.

Connection surface

- I Connector surface inside (< B_k)
 A Connector surface outside (> B_k)
- $A = Connector surface outside (> <math>B_k$)

The connecting surfaces on the driver and fixed point can be be mounted on the outside or inside according to preference.

The connection type can easily be altered at a later date.

Guide channels ► from page 160

ef devices Ige 167

Cables for cable carrier systems in our LIFE-LINE Safety Cables catalogue.

Use our free project planning service.

Type **S 1800**

Steel chain bands

Type **SX 1800**

Stainless steel chain bands

Materials

Chain bands and end connectors: **S 1800: Steel**, zinc-plated

SX 1800: grade rust and acid resistant **steel**

Standard stay material: aluminium alloy* Dividers and end pieces: plastic** → see material properties, page 50

Chain width customer-specific available in 1 mm width sections

Chain pitch

180 mm

Bend radii various standard bend radii from 265 - 1405 mm; intermediate radii upop

from 265 – 1405 mm; intermediate radii upon request

* See description for the respective stay variant for details. ** Stay variant RR: Dividers of steel.

Also available with straight link plates: Type S/SX 1852 – please contact us!

Clearance height hi = 108 mm ► from page 117

Clearance height hi = 104 mm ► from page 119

Stay variant LG

2D/3D-Data w.kabelschlepp.de

max. hole Ø = 110 mm ► from page 120

STEEL GALVANZED STAINLESS STEEL

Great the state of the state of

S/SX 1800

Design Guidelines

Rolling schematic illustration unsupported arrangement

Chain pitch t	=	180 mm
Height h _G	=	140 mm
Connection height H	=	2 KR + 210 mm
Connection length I_1	=	210/70 mm (see connection dimensions)

A flat and level surface is required for the cable carrier to extend and retract reliably. Under certain conditions, a support tray needs to be installed (see page 163).

Variable sizes

depending on the bend radius

								L	Jimensio	ns in mm
Bend radius	265	320	375	435	490	605	720	890	1175	1405
Bend length L _B	1552	1725	1898	2087	2259	2620	2982	3516	4411	5164
Bend overhang Ü _B	695	750	805	865	920	1035	1150	1320	1605	1835
Height H	740	850	960	1080	1190	1420	1650	1990	2560	3020

Chain length:
$$L_k \approx \frac{L_s}{2} + L_B$$

nstalla	tion	height*:	
4 -	нт	7	

rounded to pitch 180 mm

Pre-tension $z \approx 10$ mm/m chain length * required clear height

Load diagramm

Unsupported length Lf and travel length Ls without support depending on the additional load (see design guidelines).

Load diagram for an intrinsic chain weight qk of 26 kg/m.

If the intrinsic chain weight q_k of 26 kg/m is exceeded, the permissible additional load is reduced by the difference.

For circular operations, combinations of KR/RKR are possible. Please contact us for details.

Stay variant RM – frame stay, solid design

- frame stay RM made of aluminium solid design
- for heavy loads maximum chain widths possible
- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Chain width:
$B_k = B_i + 62 \text{ mm}$
$B_{k min} = 250 mm$ $B_{k max} = 1000 mm$
Stay width:
$B_{St} = B_i + 33 \text{ mm}$
$B_{St} = B_k - 29 \text{ mm}$

Intrinsic chain weight

Weight of the chain bands:

22.8 kg/m (excluding stays)

depending on the chain width.

for two band chains

All chain cross sections according to sectional information in the schematic illustration.

The peripheral dividers are an integral part of the stay system and must not be ordered separately.

Divider system TS 0 for stay variant RM

The dividers are **movable**.

s _T	= 7.5 mm
a _{T min}	= 21.5 mm
a _{x min}	= 25 mm

Example for ordering – divider system TS 0			
	TS 0	1	2
	Divider system		Number of dividers n _T

Stay variant RM – frame stay, reinforced design

Divider system TS 3 for stay variant RM:

Section subdivision with partitions made of plastic or aluminium

subdivision

in chamber

(mm)

Dimensions of the partitions for TS 3

 $n_{T min} = 2$

Partitions made of plastic (Standard)

When using **partitions with** $a_x > 112$ mm, there must be an additional central support with a **twin divider**. Twin dividers are suitable for subsequent installation in the partition system.

Alternatively, partitions made of aluminium in 1 mm section widths $(a_{x min} = 42 \text{ mm})$ are also available.

when ordering.

Stay variant RR – frame stay, tube design

- gentle cable support due to rotating metal tubes
- ideal when using media hoses with "soft" sheaths
- possible materials of the axles, tubes and dividers:
 - axles, tubes and dividers made of galvanized steel (Standard)
 - axles, tubes and dividers made of stainless steel ER 1, ER 1S
- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Chain width:		
$B_k = B_i + 49 \text{ mm}$		

 $B_{k \min} = 250 \text{ mm}$ $B_{k max} = 800 mm$

Stay width:

 $B_{St} = B_i + 20 \text{ mm}$ $B_{St} = B_k - 29 \text{ mm}$

Intrinsic chain weight

for two band chains depending on the chain width.

Weight of the chain bands: 22.8 kg/m (excluding stays)

All chain cross sections according to sectional information in the schematic illustration.

The peripheral dividers are an integral part of the stay system and must not be ordered separately.

Divider systems TS 0 and TS 1 for stay variant RR

The dividers are **fixed**.

- TS 0: without height subdivision
- TS 1: with continuous centric height hdivision

Sl	npc	VI	ISI	0

ST	= 5 mm
a _{T min}	= 45 mm
a _{x min}	= 45 mm

Example for ordering divider system

Please state the dimensions a_T/a_x when ordering. Possibly enclose a sketch with dimensions.

Stay variant LG – hole stay made of aluminium, split design

- optimum cable guidance in the neutral bending line is possible
- drilling pattern individually adapted to the application
- high stability due to solid construction
- split design as standard for easy laying of the cables
- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability
 also available not split

Chain width:
$B_k = \Sigma D + \Sigma c + 59 mm$

$\begin{array}{ll} B_{k \mbox{ min }} &= 180 \mbox{ mm} \\ B_{k \mbox{ max }} &= 1000 \mbox{ mm} \end{array}$

Stay width:

 $B_{St} = \Sigma D + \Sigma c + 27 mm$ $B_i = B_{St} - 2 a_0$ $B_{St} = B_k - 32 mm$

 $D_{max} = 110 \text{ mm}$ $c_{min} = 4 \text{ mm}$ $a_{0 \text{ min}} = 13.5 \text{ mm}$

All chain cross sections according to sectional information in the schematic illustration.

Intrinsic chain weight

for two band chains

depending on the chain width.

Hole area of the hole stay is approx. 50 %

Weight of the chain bands: 22.8 kg/m (excluding stays)

Stay variant RMD – covered cable carrier, STEEL-TUBE

- aluminium cover system for protecting the cables and hoses
- for applications where chips or severe contamination occur
- bolted aluminium cover for maximum stability

Steel band covers are also available as light-weight, economically priced alternatives to covering with the aluminium cover system, see page 166.

Chain width: $B_k = B_i + 62 \text{ mm}$

 $B_{k \min} = 250 \text{ mm}$ $B_{k \max} = 1000 \text{ mm}$

Stay width:

 $B_{St} = B_i + 33 \text{ mm}$ $B_{St} = B_k - 29 \text{ mm}$

Minimum bend radius KR_{min} = 320 mm

Intrinsic chain weight

for two band chains depending on the chain width.

Weight of the chain bands: 22.8 kg/m (excluding stays)

Divider system TS 0 for stay variant RMD

The dividers are movable.

s _T	= 7.5 mm
a _{T min}	= 21.5 mm
a _{x min}	= 25 mm

All chain cross sections according to sectional information in the schematic illustration.

The peripheral dividers are an integral part of the stay system and must not be ordered separately.

Fixed point connection

Connection variant FA

Connection variant FI

Connection variant FH

Connection variant FK

Different connection variants for fixed point and driver are possible according to the drawing information and are realized by different assembly of the connecting pieces.

The connection variants can also be changed at a later date if required.

Please state the desired connection variant according to the ordering key (see page 124).

Driver connection

Connection variant MA

Connection brackets at the fork end of the chain form the driver.

Connection variant MI

Connection variant MH

Connection variant MK

Design Guidelines

Ordering – cable carrier

Chain band materials:

- St = zinc-plated steel
- ER 1 = stainless steel
- ER 1S = sea water resistant stainless steel
- ER 2 = high-strength stainless steel
- More information:

See material overview on page 50.

Ordering – divider system

See also the sample order for the respective divider system.

Ordering – connection

If no order designation for the connection is stated, we supply the connection variant **FAI/MAI (Standard)**.

Connection surface

I – Connector surface inside (< B_k)
 A – Connector surface outside (> B_k)

The connecting surfaces on the driver

and fixed point can be be mounted on the outside or inside according to preference.

The connection type can easily be altered at a later date.

Guide channels ► from page 160

Cables for cable carrier systems ➤ in our LIFE-LINE Safety Cables catalogue.

124

Type **S 2500**

Steel chain bands

Type **SX 2500**

Stainless steel chain bands

Materials

6

Chain bands and end connectors:

S 2500: Steel, zinc-plated SX 2500: grade rust and acid resistant steel

Standard stay material: aluminium alloy* Dividers: plastic

→ see material properties, page 50

Chain width customer-specific available in 1 mm width sections

Chain pitch 250 mm

Bend radii various standard bend radii from 365 – 1395 mm; intermediate radii upon request

* See description for the respective stay variant for details.

Clearance height h_i = 183 mm ► from page 127

max. hole Ø = 180 mm ► from page 128 Stay variant **RR** is possible as a special design. Please contact us.

2D/3D-Data www.kabelschlepp.de/ca

0

TEEL

\INLESS

Rolling schematic illustration unsupported arrangement

Chain pitch t	=	250 mm
Height h _G	=	220 mm
Connection height H	=	2 KR + 330 mm
Connection length I ₁	=	300 mm (see connection dimensions)

A flat and level surface is required for the cable carrier to extend and retract reliably. Under certain conditions, a support tray needs to be installed (see page 163).

Variable sizes

depending on the bend radius

						0	Dimensior	ns in mm
Bend radius	365	445	600	760	920	1075	1235	1395
Bend length L _B	2147	2398	2885	3388	3890	4377	4880	5383
Bend overhang \ddot{U}_B	975	1055	1210	1370	1530	1685	1845	2005
Height H	1060	1220	1530	1850	2170	2480	2800	3120

Chain length:
$$L_k \approx \frac{L_s}{2} + L_B$$

nst	alla	tion	height*:				
- _	=	Н+	·Z				

rounded to pitch 250 mm

```
Pre-tension z \approx 10 mm/m chain length * required clear height
```

Load diagramm

Unsupported length Lf and **travel length Ls without support** depending on the additional load (see design guidelines).

Load diagram for an intrinsic chain weight q_k of 41 kg/m.

If the intrinsic chain weight q_k of 41 kg/m is exceeded, the permissible additional load is reduced by the difference.

For circular operations, combinations of KR/RKR are possible. Please contact us for details.

SX 2500 material ER 1 / ER 1S

Stay variant RM – frame stay, solid design

- frame stay RM made of aluminium solid design
- for heavy loads maximum chain widths possible
- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Chain width:
$B_k = B_i + 75 \text{ mm}$
$B_{k min} = 250 mm$ $B_{k max} = 1200 mm$
Stay width:

 $B_{St} = B_i + 43 \text{ mm}$ $B_{St} = B_k - 32 \text{ mm}$

All chain cross sections according to sectional information in the schematic illustration.

Intrinsic chain weight

for two band chains depending on the chain width.

Weight of the chain bands: 36 kg/m (excluding stays)

Divider system TS 0 for stay variant RM

The dividers are **movable**.

ST	= 12 mm
a _{T min}	= 19 mm
a _{x min}	= 25 mm

Divider systems TS 1 and TS 2 for stay variant RM

Divider systems TS 1 and TS 2 are available on request. Please contact us.

Stay variant LG – hole stay made of aluminium, split design

- optimum cable guidance in the neutral bending line is possible
- drilling pattern individually adapted to the application
- high stability due to solid construction
- split design as standard for easy laying of the cables
- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

$B_{k \text{ min}} = 250 \text{ mm}$ $B_{k \text{ max}} = 1200 \text{ mm}$

Stay width:

 $B_{St} = \Sigma D + \Sigma c + 44 \text{ mm}$ $B_i = B_{St} - 2 a_0$ $B_{St} = B_k - 32 \text{ mm}$

 $D_{max} = 180 \text{ mm}$ $c_{min} = 4 \text{ mm}$ $a_{0 \text{ min}} = 22 \text{ mm}$

Intrinsic chain weight

for two band chains

depending on the chain width.

Hole area of the hole stay is approx. 50 %

Weight of the chain bands: 36 kg/m (excluding stays)

All chain cross sections according to sectional information in the schematic illustration.

Design Guidelines

LS/LSX Series

S/SX 2500

129

Type S 2500 / SX 2500

Fixed point connection

Connection variant FA

Connection variant FI

Driver connection

Connection variant MA Connection variant MI C 0 ¢ ¢ ₿ ₿ ₿ ₿ \$ C ₿ MA M 160 26 (Standard) 160 26 18 18 ₿ ₽ ₿ ≞ ≞ ∄ Ð € ∣₿ ₿ ₿ 40 40 85 85 -250-- 300 -— 300 —

Driver and fixed point connection using double end connectors on the inside link plates.

Different connection variants for fixed point and driver are possible according to the drawing information and are realized by different assembly of the connecting pieces.

The connection variants can also be changed at a later date if required.

Please state the desired connection variant according to the ordering key (see page 130).

Ordering – cable carrier

Chain band materials:

- St = zinc-plated steel
- ER 1 = stainless steel
- ER 1S = sea water resistant stainless steel
- ER 2 = high-strength stainless steel

More information: See material overview on page 50.

Ordering – divider system

See also the sample order for the respective divider system.

Ordering – connection

If no order designation for the connection is stated, we supply the connection variant **FAI/MAI (Standard)**.

Guide channels ► from page 160

Strain relief devices

► from page 167

Cables for cable carrier systems ➤ in our LIFE-LINE Safety Cables catalogue.

130

Type **S 3200**

Steel chain bands

Decon

6

0

.

ŧ.

Туре **SX 3200**

Stainless steel chain bands

Materials

Chain bands and end connectors: S 3200: Steel, zinc-plated SX 3200: grade rust and acid resistant steel

Standard stay material: aluminium alloy → see material properties, page 50

Chain width

customer-specific available in 1 mm width sections

Chain pitch 320 mm

Bend radii various **standard bend radii** from 470 – 1785 mm; intermediate radii upon request

STEEL GALVANIZED STAINLESS STEEL RUST-FREE

WIDTHSECTIONS

🗲 1 mm 🔶

2D/3D-Data w.kabelschlepp.de/

max. hole Ø = 220 mm ► from page 133 Stay variant **RR** is possible as a special design. Please contact us.

Rolling schematic illustration unsupported arrangement

Chain pitch t	=	320 mm
Height h _G	=	300 mm
Connection height H	=	2 KR + 450 mm
Connection length I ₁	=	350 mm (see connection dimension
A flat and lovel surfac	o ic	required for the cable

A flat and level surface is required for the cable carrier to extend and retract reliably. Under certain conditions, a support tray needs to be installed (see page 163).

Variable sizes

depending on the bend radius

						Dimensio	ons in mm
Bend radius	470	670	870	1075	1275	1480	1785
Bend length L _B	2757	3385	4013	4657	5286	5930	6888
Bend overhang Ü _B	1260	1460	1660	1865	2065	2270	2575
Height H	1390	1790	2190	2600	3000	3410	4020

Chain length:
$$L_k \approx \frac{L_s}{2} + L_B$$

Installation height*: $H_z = H + z$

rounded to pitch 320 mm

Pre-tension $z \approx 10$ mm/m chain length

* required clear height

Load diagramm

Unsupported length Lf and **travel length Ls without support** depending on the additional load (see design guidelines).

Load diagram for an intrinsic chain weight q_k of 62 kg/m.

If the intrinsic chain weight q_k of 62 kg/m is exceeded, the permissible additional load is reduced by the difference.

For circular operations, combinations of KR/RKR are possible. Please contact us for details.

- S 3200 material galvanized s
- SX 3200 material ER 2
- SX 3200 material ER 1 / ER 1S

Stay variant LG – hole stay made of aluminium, split design

- optimum cable guidance in the neutral bending line is possible
- drilling pattern individually adapted to the application
- high stability due to solid construction
- split design as standard for easy laying of the cables
- Standard stay arrangement: on every 2nd chain link. Stays can be fitted on every chain link, please specify when placing your order.
- bolted stays for maximum stability

Chain width:
$B_k = \Sigma D + \Sigma c + 84 mm$
D 250 mm

$B_{k \text{ min}} = 250 \text{ mm}$ $B_{k \text{ max}} = 1500 \text{ mm}$

Stay width:

 $B_{St} = \Sigma D + \Sigma c + 44 \text{ mm}$ $B_i = B_{St} - 2 a_0$ $B_{St} = B_k - 40 \text{ mm}$

 $D_{max} = 220 \text{ mm}$ $c_{min} = 4 \text{ mm}$ $a_{0 \text{ min}} = 22 \text{ mm}$

Intrinsic chain weight

for two band chains depending on the chain width.

Hole area of the hole stay is approx. 50 %

Weight of the chain bands: 55 kg/m (excluding stays)

All chain cross sections according to sectional information in the schematic illustration.

Fixed point connection

Connection variant FA

Connection variant FI

Driver connection

Connection variant MA

Connection variant MI

Driver and fixed point connection using double end connectors on the inside link plates.

Different connection variants for fixed point and driver are possible according to the drawing information and are realized by different assembly of the connecting pieces.

The connection variants can also be changed at a later date if required.

Please state the desired connection variant according to the ordering key (see page 135).

Ordering – cable carrier

Cable Carrier S 3200 820 LG 1075 ER 1 9280 Stay width Stay variant Bend radius Chain band Chain length Туре Bst in mm Lk in mm (with-KR in mm material out connection)

Chain band materials:

- St = zinc-plated steel
- ER 1 = stainless steel
- ER 1S = sea water resistant stainless steel
- ER 2 = high-strength stainless steel
- More information:
- See material overview on page 50.

Design Guidelines

Ordering – connection

Guide channels ► from page 160

Strain relief devices ► from page 167

Cables for cable carrier systems ➤ in our LIFE-LINE Safety Cables catalogue.

If no order designation for the connec-

variant FAI/MAI (Standard).

tion is stated, we supply the connection

Cable Carrier for **Offshore**-applications

Type **S 5000/6000/7000**

Steel chain bands

Type SX 5000/6000/7000

Stainless steel chain bands

Steel cable carriers, in the delivery condition with transport frame

Materials Chain bands and end connectors: FFFL S 5000 / 6000 / 7000: Steel, zinc-plated SX 5000 / 6000 / 7000: grade rust and acid resistant steel Standard stay material: aluminium alloy → see material properties, page 50 **WIDTH**SECTIONS Chain width 🔶 1 mm 🔶 customer-specific available in 1 mm width sections Chain pitch S/SX 5000: 200 mm / S/SX 6000: 320 mm / S/SX 7000: 450 mm

Bend radii various standard bend radii from 500 – 2400 mm; intermediate radii upon request

INI FSS

For applications with extremely large additional loads and very large chain dimensions.

Cable carriers of the types 5000 / 6000 / 7000 are usually special designs for special applications such as, e.g. in the offshore area.

Type S/SX 5000 / 6000 / 7000

Rolling schematic illustration unsupported arrangement

Туре	S/SX 5000	S/SX 6000	S/SX 7000		
Chain pitch T	200	320	450		
Height h _G	200	300	450		
Connection height H	2	KR + 1.5	hg		
Connection length I_1	75	125	200		

A flat and level surface is required for the cable carrier to extend and retract reliably. Under certain conditions, a support tray needs to be installed (see page 163).

Variable sizes

depending on the bend radius

Type S/SX 5000	Dimensions in mm					Type S/SX 6000				Dimensions in mm		
Bend radius	500	600	800	1000	1200	Bend radius	700	900	1100	1300	1500	
Bend length L _B	2370	2685	3315	3940	4570	Bend length L_B	3480	4110	4735	5365	5995	
Bend overhang \ddot{U}_B	1075	1175	1375	1575	1775	Bend overhang \ddot{U}_B	1615	1815	2015	2215	2415	
Height H	1300	1500	1900	2300	2700	Height H	1850	2250	2650	3050	3450	

Type S/SX 7000

Type S/SX 7000				Dimensio	ons in mm
Bend radius	1100	1250	1500	1800	2400
Bend length L _B	5255	5725	6510	7450	9335
Bend overhang Ü _B	2425	2575	2825	3125	3725
Height H	2875	3175	3675	4275	5475

Chain length:				
$L_k \approx \frac{L_s}{2} +$	LB			

rounded to chain pitch

Installation height*:

 $H_z = H + z$

Pre-tension $z\approx 10$ mm/m chain length * required clear height

ABELSCHLEPP

the power to innovate

Type S/SX 5000 / 6000 / 7000

Load diagramm

Unsupported length Lf and **travel length Ls without support** depending on the additional load (see design guidelines).

The intrinsic chain weight has been based on the weight of the chain bands for the load diagram.

40 kg/m for Type S/SX 5000 50 kg/m for Type S/SX 6000 125 kg/m for Type S/SX 7000

The permitted additional load is reduced by the difference for a larger intrinsic weight.

SX 5000/6000/7000 material ER 2
 SX 5000/6000/7000 material ER 1

Type S/SX 5000 / 6000 / 7000

Chain cross section

Chain and stay width

Chain and stay width		Dimensions in mm		
Туре	Chain width	Stay width B _{St}	h _{i max}	
S/SX 5000	B _i + 117	B _i + 38	150	
S/SX 6000	B _i + 123	B _i + 38	240	
S/SX 7000	B _i + 150	B _i + 60	370	

Туре	B _k min	B _k max	s _T	a _T max	a _x max
S/SX 5000	250	1200	10	150	150
S/SX 6000	300	1500	10	200	200
S/SX 7000	350	1800	10	250	250

Intrinsic chain weight

for two band chains depending on the chain width.

depending on the chain width.

Weight of the chain bands (excluding stays):

40 kg/m for type S/SX 5000 50 kg/m for type S/SX 6000 125 kg/m for type S/SX 7000

Type S/SX 7000

Design and ordering

Please contact us, we would be happy to advise you.

Guide channels ► from page 160

Strain relief devices

► from page 167

Cables for cable carrier systems ➤ in our LIFE-LINE Safety Cables catalogue.

Chain width B_k in mm

1800

Type S/SX 5000 / 6000 / 7000

Fixed point connection

Connection variant FA

Connection variant FI

Driver connection

Connection variant MA

Туре	S/SX 5000	S/SX 6000	S/SX 7000
I ₁	75	125	200
l ₂	275	445	650
l ₃	100	200	230
I ₄	25	25	25
X1	189	195	200
X ₂	44	38	38
X ₃	134	128	128

Connection variant MI

Driver and fixed point connection using double end connectors on the inside link plates.

Different connection variants for fixed point and driver are possible according to the drawing information and are realized by different assembly of the connecting pieces. The connection variants can also be changed at a later date if required.

ABELSCHLEP

Flexible Energy Conduits – TUBES

CONDUFLEX

Closed designer cable carrier.

MOBIFLEX

2D/3D-Data	
www.kabelschlepp.de/cad	

- enclosed cable carriers in a sophisticated design
- attractive appearance due to stainless steel crossbars and frame made of fiberglass reinforced polyamide
- easy replacement of the crossbars where external damage has occurred

Enclosed cable carriers with flexible metal helical tube

flexible metal helical tubes combined

unsupported due to the inserted,

with special steel band

pre-tensioned steel band.

ideal in the case of hot chips

Туре	Height h _i	Clear width B _i
CF 055	25	45
CF 060	40	36
CF 085	38	73
CF 115	52	102
CF 120	70	100
CF 175	72	162

- optimized protection for cables and hoses
- subsequent shortening or lengthening is possible easily
- TÜV type tested according to 2 PfG 1036/10.97

Design Guidelines

LS/LSX Series

S/SX Series

Clear width Height Туре hi Bi MF 030.1 24 26 MF 050.1 24 45 MF 050.2 44 45 MF 080.1 40 80 MF 080.2 54 80 MF 080.3 78 80 MF 110.1 53 109 MF 110.2 73 109 MF 110.3 108 109 MF 170.1 72 170 MF 170.2 102 170 MF 170.3 170 167

143

Flexible Energy Conduits CONDUFLEX

Rolling schematic illustration unsupported arrangement

Chain pitch t	=	type-dependent, see dimensions table on page 145
Height h _G	=	see hose cross sections on page 145
Connection height H	=	2 KR + h _G
Connection length I_1	=	see connection dimensions

A flat and level surface is required for the flexible conduit to be installed properly. If necessary a support tray should be used (see page 163).

Variable sizes

depending on the bend radius

depending on the bend radius				Dimensions in mm	
CONDUFLEX Type	KR	L _B	Ü _B	H _{min}	Conduit weight in kg/m
CF 055	65 100 150	405 515 675	184 219 269	168 238 338	1.25
CF 060	100	515	226	252	1.60
CF 085	100 150 200 250	515 675 830 985	226 276 326 376	252 353 452 552	1.90
CF 115	140 225 300	690 960 1200	299 384 459	347 517 667	2.60
CF 120	155 200	740 880	323 368	396 486	3.80
CF 175	185 250 350	830 1035 1400	382 447 547	464 594 794	5.20

- KR = Bend radius
- L_B = Length of bend
- \ddot{U}_B = Bend overhang
- $H_{min} = Minimum$ connection height

CLength of co	onduit:
$L_{ES} \approx \frac{L_{S}}{2}$	+ L _B

rounded to pitch t

Load diagramm

Unsupported length Lf and travel length Ls without support depending on the additional load (see design guidelines).

Long travel lengths

If the unsupported length of the flexible conduit is exceeded, it may be possible to cover the required travel length with the assistance of suitable supports. Please contact us.

Design: see Construction Guidelines.

Flexible Energy Conduits CONDUFLEX

Cross section according to sectional information in the schematic illustration

Dimensions Dimensions in mm										
CONDUFLEX Type	B _s	Bi	h _G	h _i	t					
CF 055*	62	45	38	25	20					
CF 060	60	36	52	40	20					
CF 085*	92	73	52	38	20					
CF 115*	123	102	67	52	25					
CF 120	127	100	86	70	25					
CF 175*	190	162	94	72	30					

52 38 45 62

CONDUFLEX

CONDUFLEX Type CF 055*

CONDUFLEX Type CF 085*

*) CONDUFLEX flexible energy conduits types CF 055, CF 085, CF 115 und CF 175 can be fitted with protective straps to shield the impact slots of the plastic frames from contamination.

The "Guidelines for Installing Cables and Hoses in Cable Carriers" are to be observed when planning a CONDUFLEX flexible energy conduit (see Construction Guidelines)!

CONDUFLEX Type CF 115* 57

102 123 CONDUFLEX Type CF 120 2 89

22

CONDUFLEX Type CF 175*

72

162 190

100

127

Flexible Energy Conduits CONDUFLEX

Connection dimensions

Diagonal flange connector bracket - SF

			Dimensions in mm								
CONDUFLEX Type	b	h	e	d ₁	l ₁	l ₂	l ₃				
CF 055	55	36	22	6.5	44	12.5	20				
CF 060	55	52	22	6.5	44	12.5	20				
CF 085	85	50	50	6.5	70	15.0	32				
CF 115	117	66	70	8.5	84	17.5	34				
CF 120	120	84	70	8.5	82	17.5	48				
CF 175	182	92	100	10.5	100	22.5	45				

Connector variants for diagonal flange connectors SF

Dimensions in mm

3

Please state the position of the connecting surfaces when ordering.

Standard connector bracket - ST

CONDUFLEX Type	b	h	е	d ₁	I ₁	l ₂				
CF 055	55	36	22	6.5	20	8.5				
CF 060	-	-	-	-	-	-				
CF 085	85	52	50	6.5	25	10.0				
CF 115	116	68	65-70	8.5	35	10.0				
CF 120	120	84	70	8.5	35	12.5				
CF 175	182	92	100	10.5	40	15.0				

Connector variants for standard connectors ST

Dimensions in mm

Please state the position of the connecting surfaces when ordering.

Cross flange connector bracket - QF

High flange connector bracket - HF

CONDUFLEX Type	b	h	b ₁	е	d ₁	l ₁
CF 055	55	35	90	75	6.5	20
CF 060	-	-	-	-	-	-
CF 085	85	50	120	105	6.5	25
CF 115	116	64	160	140	8.5	35
CF 120	-	-	-	_	-	-
CF 175	182	90	226	200	10.5	40

	Dimensions in mi									
CONDUFLEX Type	b	h	h ₁	e _b	e _h	d ₁	l ₁			
CF 055	55	35	70	18	55	6.5	20			
CF 060	-	-	-	-	-	-	-			
CF 085	85	50	85	45	70	6.5	25			
CF 115	116	64	110	60	90	8.5	35			
CF 120	-	-	-	-	-	-	-			
CF 175	182	90	136	95	110	10.5	40			

The connectors SF, ST, QF and HF can be combined. Please state when ordering.

Flexible Energy Conduits CONDUFLEX

Ordering – cable carrier

Ordering – connection

Connector variants for standard connectors ST

Please state the position of the connecting surfaces for connection variants SF and ST when ordering.

Guide channels ► from page 160

Strain relief devices ► from page 167

Cables for cable carrier systems ➤ in our LIFE-LINE Safety Cables catalogue.

Flexible Energy Conduits MOBIFLEX

Rolling schematic illustration unsupported arrangement

Height h _G	=	see hose
		cross sections

- Connection height H = $2 \text{ KR} + h_{\text{G}}$
- Required clearance height H_z

(see page 163).

height H_z = H + z (z \approx 50 mm) Bend overhang Ü_B = 1.5 KR + h_G/2

A flat and level surface is required for the flexible conduit to be installed properly.

If necessary a support tray should be used

Dimensions / Weights

Dimensions / Weights Dimensions in mm/Weights in kg/m											
MOBIFLEX Type	Bs	Bi	h _G	h _i	Available bend radii KR			Weight G _S	Contraction L _{VK}		
MF 030.1	30	26	30	24	80	-	-	-	1.2	45	
MF 050.1	50	45	30	24	75	100	-	150	2.0	45	
MF 050.2	50	45	50	44	110	150	-	200	2.5	80	
MF 080.1	85	80	45	40	100	150	-	200	3.0	70	
MF 080.2	85	80	60	54	150	200	-	250	3.5	95	
MF 080.3	85	80	85	78	200	-	-	-	5.1	135	
MF 110.1	115	109	60	53	150	200	-	250	4.8	95	
MF 110.2	115	109	80	73	200	250	-	350	5.3	125	
MF 110.3	115	109	115	108	300	-	-	-	6.6	180	
MF 170.1	175	170	80	72	190	250	300	350	7.2	125	
MF 170.2	175	170	110	102	250	300	-	400	8.2	175	
MF 170.3	175	170	175	167	365	-	-	-	9.2	275	

Length of conduit (with loop):

$$L_{ES} \approx \frac{L_{S}}{L_{S}} + L_{P}$$

$$L_{ES} \approx \frac{3}{2} + L_{ES}$$

Bend length $L_B = KR \cdot \pi + Reserve (KR)$

Stretched length of conduit:

 $L_{stretched} = L_{ES} - L_{VK}$

Shortening of conduit $L_{VK} = h_G/2 \cdot \pi$

Specified bend radii = KR_{max}

Production-related tolerances: - 20 bis - 30 mm

Load diagramm

Unsupported length Lf and travel length Ls without support depending on the additional load (see design guidelines).

Long travel lengths

If the unsupported length of the flexible conduit is exceeded, it may be possible to cover the required travel length with the assistance of suitable supports. Please contact us.

Design: see Construction Guidelines.

Flexible Energy Conduits MOBIFLEX

Connection Dimensions

Diagonal flange connector bracket – SF

	Dimensions in mn										
Туре	b	h	е	f	d	l ₁	l ₂	l ₃			
MF 030.1	34	34	-	40	9	120	60	10			
MF 050.1	54	34	20	40	9	120	60	10			
MF 050.2	54	54	20	40	9	120	60	10			
MF 080.1	90	50	50	40	9	120	60	10			
MF 080.2	90	65	50	40	9	120	60	10			
MF 080.3	90	90	50	40	9	120	60	10			
MF 110.1	120	65	80	40	9	120	60	10			
MF 110.2	120	85	80	40	9	120	60	10			
MF 110.3	120	120	80	40	9	120	60	10			
MF 170.1	180	85	140	40	9	120	60	10			
MF 170.2	180	115	140	40	9	120	60	10			
MF 170.3	180	180	140	40	9	120	60	10			

Connector variants for diagonal flange connectors SF

Connecting surfaces outside/outside

Please state the position of the connecting surfaces when ordering.

Standard connector bracket – ST

Cross flange connector bracket – QF

	Dimensions in mm												
Туре	b	h	е	e _b	e _h	d	l ₁	l ₂	b _w	b ₁	h ₁		
MF 030.1	34	34	-	56	56	9	60	20	20	74	74		
MF 050.1	54	34	20	76	56	9	60	20	20	94	74		
MF 050.2	54	54	20	76	76	9	60	20	20	94	94		
MF 080.1	89	49	50	111	71	9	75	20	20	129	89		
MF 080.2	89	64	50	111	86	9	75	20	20	129	104		
MF 080.3	89	89	50	111	111	9	75	20	20	129	129		
MF 110.1	119	64	80	141	86	9	95	20	20	159	104		
MF 110.2	119	84	80	141	106	9	95	20	20	159	124		
MF 110.3	119	119	80	141	141	9	95	20	20	159	159		
MF 170.1	179	84	140	201	106	9	95	20	20	219	124		
MF 170.2	179	114	140	201	136	9	95	20	20	219	154		
MF 170.3	179	179	140	201	201	9	95	20	20	219	219		

Front flange connectors can be supplied in accordance with customer drawings.

High flange connector bracket – HF

The connectors SF, ST, QF and HF can be combined. Please state when ordering.

S/SX Series

Design Guidelines

LS/LSX Series

Flexible Energy Conduits MOBIFLEX

Ordering – cable carrier

Ordering – connection

Connector variants for diagonal flange connectors SF

Please state the position of the connecting surfaces for connection variant SF when ordering.

Guide channels ► from page 160

Strain relief devices ► from page 167

Cables for cable carrier systems ➤ in our LIFE-LINE Safety Cables catalogue.

Use our free project planning service.

Electrical cables for cable carriers

LIFE-LINE Safety Cables

Continuous bending hi-flex electrical cables for cable carriers

Fully harnessed cable carrier systems

TOTALTRAX

Cable carrier, cable and connector - ready to connect

Design Guidelines

151

Cost-effective – safe – reliable.

LIFE-LINE cable carrier systems designed by the experts for the experts.

LIFE-LINE cables have been specially developed for use in cable carriers. The use of high quality materials and the optimized design reduce the risk of failure due to corkscrew formation, broken cores or insulation damage.

Different series with various performance characteristics help you to find the suitable cable for your application. Many economically priced PVC insulation and jacket materials are sufficient for applications with short travel lengths. On the other hand, higher quality PUR cables are recommended for extremely long travel lengths or high travel speeds.

You will find cables for different applications with a large choice of cross sections in our cable range – **available directly from stock**.

- Series 200 Standard cost-effective PVC standard cables for a wide range of applications
- Series 400/400 Standard^{PLUS}
 PVC standard cables *PLUS* for challenging applications
- Series 700 high-quality PUR cables for the most challenging applications
- Series 800 and 900 PUR-system cables

LIFE-LINE Cable types

- Control cables
- Power cables
- Data cables
- BUS-/LWL-/Coaxial cables
- System cables with connections compatible with the SIEMENS/INDRAMAT standard
- LIFE-LINE harnessed: USB / CAT5

Signal cables with connections compatible with the SIEMENS standard

Power cables with connections compa tible with the SIEMENS standard

Pre-assembled LIFE-LINE electrical cables in a steel cable carrier S 0950

Design features which give you reliability.

- Outer jacket made of highly flexible and resistant special compounds
- Maximum stability and service life due to valley-sealed filling extrusion technology (type-dependent)
- Requirements-optimized cabling (layer cabling, low torsion in short pitches / bundled stranding / hybrid layouts)
- Valley-sealed extruded inner jacket (type-dependent)
- Flexible shielding with outstanding electrical properties for shielded types

Integrated Colour Code

- Co-extruded Color Identification based on DESINA color code. Power, control and BUS cables etc. have different color codes to be easily visually differentiated. Thus, shorter assembly or service times result in cost reduction.
- The Color Code System also serves as **helpful tool** when installing the cables into the carrier.
- UV-resistant black outer jacket for outdoor and indoor applications.

Cut-to-order in our KABELSCHLEPP cable warehouse.

We cut our KABELSCHLEPP LIFE-LINE electrical cables according to your individual order in our cable warehouse.

Our vast inventory range offers cables for almost every application.

■ KABELSCHLEPP cable warehouse

- Use of high quality and application-optimized core elements
- Small bend radii for compact cable carriers
- UL/CSA approval (type-dependent)
- DESINA jacket colors (type-dependent)
- DESINA with KC (type-dependent)

KABELSCHLEPP LIFE-LINE cable database for EPLAN.

EPLAN has developed over more than 20 years into a leading E-CAD system and has become more or less established as a standard in some branches.

As a provider of continuous bending highly flexible electrical cables for cable and hose carriers, we offer you the KABELSCHLEPP LIFE-LINE cable databases as a superior tool for optimising your daily work with EPLAN.

The databases are optimized for use in EPLAN5 and for transmission according to EPLAN P8 electric.

EPLAN

- Easy cable selection by construction
- Automatic addition of core number, cross-section and core colour
- Complete data for parts lists and other evaluations

Large selection of types – available directly from stock.

You will find cables for different application areas with a large choice of various cross sections in our cable range – directly available from stock.

The complete cable range can be found in our LIFE-LINE Safety Cables catalogue. Please request a copy.

More information: www.kabelschlepp.de/ lifeline CONDUCTEX

-S/LSX Series

S/SX Series

Product overview LIFE-LINE Safety Cables

PVC control cables

LIFE-LINE Control 200 Standard LIFE-LINE Control 200 C Standard

- Cost-effective standard control cables for a wide range of applications
- Unsupported and gliding applications with normal load for average bend radii as well as speeds
- Black outer jacket for high UV-resistance, also suitable for outdoor applications; co-extruded ICC Color Code Identification based on DESINA color code simplifies the correct cable installation into the carrier

 Example of layered stranding shielded design

PVC control cables

LIFE-LINE Control 700 LIFE-LINE Control 700 C

- High-quality PUR control cables for even the most challenging applications
- Unsupported and gliding applications with smallest bend radii and very high speeds; especially suitable for long travel lengths
- For indoor and outdoor applications
- Optimized bundle-stranding > 8 strands for highest availability
- Shielded design with continuous bending hi-flex braided shield

Example of bundled stranding shielded design

PVC control cables

LIFE-LINE Control 400 Standard^{PLUS} LIFE-LINE Control 400 C Standard^{PLUS}

- Standard^{PLUS} control cables
 for more challenging applications
- Unsupported and gliding applications with small bend radii and high speeds
- Black outer jacket for high UV-resistance, also suitable for outdoor applications; co-extruded ICC Color Code Identification based on DESINA color code simplifies the correct cable installation into the carrier

PUR BUS/Koax/LWL cables

LIFE-LINE Profibus, CAN-BUS, USB, Interbus, CAT5, DeviceNet, Koax, LWL 700

- Super-flexible, continuous bending hi-flex and robust PUR-BUS-/Koax-/LWL cables
- For universal and extremely challenging applications in cable carriers
- For unsupported and long gliding applications with small bend radii

Example of USB design

Product overview LIFE-LINE Safety Cables

PVC power cables

LIFE-LINE Power 400 LIFE-LINE Power 400 C

- High-quality, robust PVC motor cables for challenging applications
- Unsupported and gliding applications for small bend radii and high speeds
- Particularly suitable for long travel lengths
- Suitable for indoor and outdoor applications
- High wear-resistant and robust outer jacket

Example of layered stranding shielded design

PUR data cables LIFE-LINE Data 700 C

LIFE-LINE Data 700 CD

- Super-flexible, continuous bending hi-flex and robust PUR data cables with inner jacket
- Pair-stranding cabling and complete shielding – suitable for critical EMC environments
- For universal and extremely challenging applications in cable carriers
- For unsupported and very long gliding applications with small bend radii
- Particularly suitable for high speeds and accelerations
- Double shielded CD version

Example of pair-stranding shielded design

PUR power cables

LIFE-LINE Power 700/ONE 700 LIFE-LINE Power 700 C/ONE 700 C

- High-quality, robust PUR motor cables for even the most challenging applications
 Unsupported and gliding applications for very small bend radii and very high speeds
 Particularly suitable for long travel lengths
 - For indoor and outdoor applications
 - High wear-resistant and nick-resistant outer jacket
 - Individual strands with double-jacket
 - Shielded design with continuous bending hi-flex braided shield

Design Guidelines

LS/LSX Series

S/SX Series

PUR system cables

LIFE-LINE System S 800 C/M 800 C LIFE-LINE System S 900 C/M 900 C

- High-quality PUR combi-cables for challenging system applications
- Unsupported and gliding applications for small bend radii and high speeds
- Suitable for long travel lengths
- For indoor and outdoor applications
- Reliable transmission according to SIEMENS- or INDRAMAT specifications

Example of motor cable with control strands

TOTALTRAX turn-key systems.

Fully harnessed cable carrier systems.

You know what product you need – we supply it to you completely harnessed.

One supplier and contact person for the complete system

We develop, design and supply all components required for your individual cable & hose carrier system.

 Ready-to-connect assembled plastic cable carrier system, packed ready for installation

Everything from a single source

- Consulting
 Hydraulic hoses
 Planning
 Pneumatic hoses
 Design
 Plug-and-socket connectors
 Cable carriers
 Assemply plates
 Electrical cables
 Complete guarantee
 Components
- + One contact person
- + One order
- + One delivery
- + Guaranteed quality
- = TOTALTRAX Complete System

TOTALTRAX – from design to the complete system

NOTE:

We also manufacture cables according to SIEMENS and INDRAMAT specifications

KABELSCHLEPP LIFE-LINE cables are harnessed according to SIEMENS-/INDRAMAT specifications, suitable for SIEMENS or INDRAMAT drive controls which consist of signal and power cables and/or extension cables.

- any cable length available
- delivery minimum: 1 unit

LS/LSX Series

S/SX Series

Cut costs with TOTALTRAX complete cable carrier systems

We help you . . .

- Support in the design phase
- Only one contact person for the complete system including all the individual components
- Complete delivery from a single source
- Only one supplier one purchase order and one item number
- All components match each other perfectly
- Guarantee certificate upon requests

... to cut your costs!

- Goods receiving inspections for all individual components are no longer required
- Expensive technical personnel and special tools are no longer required
- Shorter assembly times
- No hidden costs, e.g. cables being cut to excessive lengths etc.
- Less captive capital with almost no inventory
- On-time delivery directly to your production siteo

No storage costs for individual components

Our warehouses offer cables, plug-and-socket connectors as well as many other individual components.

Completely pre-assembled steel cable carriers with cables and connectors.

Complete service – even for applications with extreme assembly conditions

Our service team can design and assemble your cable carrier system even for applications with extreme assembly conditions.

Our service center experts provide you with the support you need.

- Complete assembly with guide channels
- Uncoiling of harnessed cable carrier systems with long travel lengths
- Assembly at great heights (e. g. crane systems)

 Fully harnessed cable carrier system in shipping crate

 Assembly of the fully harnessed cable carrier system

CONDUFLEX MOBIFLEX

Accessories for steel cable carriers

Guide channels Support trays Support rollers Steel strip covers Strain relief devices

Design Guidelines

Guide channels made of steel plate for installation variant EBV 05.

Guide channels provide the side guidance of the cable carrier in the sliding arrangement. They prevent the upper trough slipping off the lower trough.

For long travel lengths, the cable carrier upper trough glides on the lower trough and on the gliding surface of the guide channel (see installation variant EBV 05). The graphic **1** on the next page shows this principle.

In order to ensure the gliding of the chain bands, glide shoes are bolted on to the side plates of the cable carrier.

lower trough

Upper trough gliding on the Standard glide shoes for S/SX 1250

Standard design

Materials: galvanized steel plate/ stainless steel

Supply length: standard length 2 m/ special lengths on request

- very easy and universal assembly there is no alignment of the channel side walls with each other as there are no loose channel side walls
- large support widths due to stable U construction
- easy fixing options:
 - standard retaining plates
 - direct welding on-site
 - various special solutions with retaining bracket
- optionally as corrosion-resistant, sea water resistant version
- special glide pads are available for reducing glide resistance and wear between cable carrier and support. Please contact us.

Optional standard fixing with retaining plates

A retaining plate is mounted on the adjoining points and as well as fixing the channel to the floor also guarantees an exact connection of the adjoining points.

- optimum alignment of the adjoining points
- reduced installation times
- minimal number of threaded connections
- secure hold, also in harsh conditions

Please state the channel system when ordering if retaining plates will be needed.

Calculation of guide channel length LKA

 $L_{KA'}$ = Channel length with support $\triangleq L_s/2$ with single-sided arrangement $\triangleq X - 2 I_1$ with opposing arrangement $L_{Z1} = \text{Additional dimension for loop over}$ $\stackrel{\frown}{=} \ddot{U}_{B} + 50 \text{ mm}$ $L_{72} = \text{Additional dimension for connectic}$

 $_{Z2}$ = Additional dimension for connection \triangleq I₁ + 50 mm

For all other abbreviations see page 5.

Channel cross-sections

Subject to change

Cross section A - A Channel profile without support

Dimensions in mm

Cross section B - B

Channel profile with support

- BEF = width of the cable carrier using glide shoesb1 = inside width of the channel
- B_{KA} = width of the channel
- h_{KA} = height of the channel
- s = plate thickness
- h_1 = height of the support

Dimensions, channel systems, steel chains

Туре	BEF	b1	B _{KA}	h _{KA}	s	
S/SX 0650	B _k + 5	B _k + 10	B _k + 30	120 for KR \leq 155 200 for KR > 155	2	
S/SX 0950	B _k + 9	B _k + 14	B _k + 34	150 for KR \leq 200 300 for KR > 200	2	
S/SX 1250	В _k + б	B _k + 12	B _k + 32	200 for KR \leq 300 400 for KR > 300	3	
S/SX 1800	B _k + 8	B _k + 14	B _k + 34	300 for KR \leq 435 500 for KR > 435	3	

Guide channels for the other series are available on request.

S/SX Series

CONDUFLEX MOBIFLEX

Accessories

Examples of guide channels special solutions in steel plate design.

Bottom open channel

With KABELSCHLEPP guide channels, you have various different options for fixing them to the ground or on a support structure as well as the standard fixing.

Welded-on fixing plates

Unsupported connection points

Fixing with fixing brackets

0

- for fine-grain dirt particles, water, etc. ...
- dust and dirt can drop through the open design below
- application area in washing plants, the woodworking industry, composting plants ...

Also here, no adjoining point offset of the individual channel elements must occur at the connection points, i.e. sidewalls and floor must form a smooth surface.

- very easy and universal assembly there is no alignment of the channel side walls with each other as there are no loose channel side walls
- optimum alignment of the adjoining points
- reduced installation times
- minimal number of threaded connections
- plug-in system
- unsupported adjoining points without support (self-supporting) using flange connections
- secure, fixed connection to adjoining points also for extreme vibrations or in unsupported channel arrangements.
- easy alignment of the adjoining points
- reduced installation times
- minimized number of threaded connections

Support trays.

A flat surface is required when setting the cable carrier down. If this is not available on site, a support tray must be provided.

Materials: galvanized steel plate stainless steel plate aluminium plate

The standard supply length is 2 m. Special lengths on request.

Length of support tray:

$$L_S \approx \frac{L_A}{2} = + \ddot{U}_B + I_1$$

(for standard connection)

 $\ddot{U}_{B} = loop overhang$

 I_1 = connection length

 \ddot{U}_B and I_1 – see the cable carrier technical data

In the case of strain relief at the fixed point, the length of the support tray must be increased accordingly.

happy to advise you.

				Dimensions in mm
Туре	Clear width b1	Total width B _A	Total height h _A	Steel sheet thickness
LS/LSX 1050	B _k + 15	B _k + 40	30	2
S/SX 0650/0950	B _k + 15	B _k + 40	30	2
S/SX 1250/1850	B _k + 20	B _k + 60	50	3
S/SX 2500/3200	B _k + 25	B _k + 75	80	3
S/SX 5000/6000/7000	B _k + 25	B _k + 75	80	3
CF 055/CF 060	70	85	20	1.5
CF 085	100	115	20	1.5
CF 115	130	155	30	2.0
CF 120	135	160	30	2.0
CF 175	200	225	30	2.0
MF 030.	40	55	20	1.5
MF 050.	70	85	20	1.5
MF 080.	100	115	20	1.5
MF 110.	135	160	30	2.0
MF 170.	200	225	30	2.0

Dimensions table

Example for ordering:

Support tray for cable carrier Type S 0950 – Bk 250 mm Length LA 3200 mm, Material: zinc-plated steel sheet

CONDUFLEX MOBIFLEX

Design Guidelines

LS/LSX Series

163

Standard support rollers for types LS/LSX 1050, S/SX 0650, 0950, 1250 and 1800.

- economically priced standard support rollers in light-weight design
- long service life due to ball-bearing rollers
- optimized installation width
- only for use with two-band chains

Design of cable carrier systems with support rollers - see page 33.

Standard support rollers dimensions table

Stanuaru	Dimensions in mm						
BE	BG	b ₁	H _{SR}	H _A	А	С	
B _k + 52	B _k + 90	B _k + 20	2 KR + 15	2 KR – 50	B _k – 10	B _k + 60	

Abbreviations:

- B_k = Chain width
- b_1 = Clearance width of roller
- B_G = Total width of support
- B_E = Contact width of roller
- H_A = Axle height of support roller
- H_{SR} = Height of the support roller
- d = Diameter of fixing holes

Support rollers with reinforced design for types LS/LSX 1050, S/SX 0650, 0950, 1250 and 1800.

■ solid design for extreme loads

- long service life due to ball-bearing roller
- also suitable for multi-band chains
- with hard manganese wear protection for type S/SX and applications with high loads
- also available in stainless steel version

Reinforced support rollers dimensions table

					Dime	
Туре	D _R	b1	B _R	BE	BG	Ds
LS/LSX 1050	120	B _k + 20	B _k + 50	B _k + 64	B _k + 174	Ø 200
S/SX 0650	90	B _k + 15	B _k + 45	B _k + 59	B _k + 169	Ø 170
S/SX 0950 S/SX 1250 S/SX 1800	120	B _k + 20	B _k + 50	B _k + 64	B _k + 174	Ø 200
S/SX 2500	220	B _k + 30	B _k + 60	B _k + 74	B _k + 184	Ø 300

Support blocks dimensions table

Dimensions in r										
Туре	H _A	BP	Lp	U	a ₁	a ₂	a3	d	s	
S/SX 1050	2 KR – 60	100	180	80	20	20	80	Ø 18	8	
S/SX 0650	2 KR – 45	80	180	80	20	40		Ø 14	8	
S/SX 0950 S/SX 1250 S/SX 1800	2 KR – 60	100	180	80	20	20	80	Ø 18	8	
S/SX 2500	2 KR - 110	100	180	80	20	20	80	Ø 18	8	

Support rollers for other types on request.

Dimensions in mm

DS

- P	I

Abbreviations:

HΑ

d

S

ABELSCHLEP

the power to innovate

Dr	=	Diameter of support roller
Ds	=	Diameter of wheel

- = Diameter of wheel flange
- B_k = Chain width
- b_1 = Clearance width of roller
 - = Total width of support
- B_G = Total width of s B_R = Width of roller
- B_E = Contact width of roller
- $B_P = Width of base plate$
 - = Axle height of support roller
- H_{SR} = Height of the support roller
- L_P = Length of base plate
- U = Width of U profile
- a₁ = Hole distance to side edge of base plate
- a₂ = Hole distance to outer edge of base plate
- a3 = Hole distance to outer edge of base plate
 - = Diameter of fixing holes
 - = Thickness of base plate

S/SX Series

CONDUFLEX MOBIFLEX

LIFE-LINE TOTALTRAX

Design Guidelines

Steel strip covers.

Cable carriers made of rust and acid resistant spring steel strip can be supplied for protection of the cables against flying sparks, radiant heat and small chips.

- **economically priced** cover variant **for half-stay version**
- made of rust and acid resistant spring steel strip
- maximum steel band width: 1000 mm

Dimensions Table

Dimensions in mn									
Туре	Length of ste Outer cover	eel strip cover Inner cover	Width of steel strip cover						
S/SX 0650	L _k + 280	L _k + 130	B _k – 22						
S/SX 0950	L _k + 360	L _k + 150	B _k – 27						
S/SX 1250	L _k + 470	L _k + 170	B _k - 34						
S/SX 1800	L _k + 640	L _k + 200	B _k - 40						
S/SX 2500	L _k + 945	L _k + 255	B _k – 48						

Steel band covers for the other types are available on request.

Fixing of steel strip cover

Steel band holder on the sidebands.

Fastening to the chain connection with special end connector.

Strain relief components.

Strain relief for cables is dependant upon the cable type, total carrier length and installation situation. See "Strain relief of cables and hoses" on page 48.

In the case of cable carriers with upper and lower trough sliding on each other (installation variant EBV 05), the installation height of the strain relief must not be higher than the chain link height.

Overview of strain relief elements

SZL strain relief devices

- economically priced solution
- easy installation without toolsSee page 169.

Saddle-type clamps

- small installation width
- for one cable and two or three cables on top of each other

See page 170.

for the strain relief of hosesSee page 172.

Positioning of strain relief components

LS/LSX Series

- The C-Rail is fixed in the end connector and must not be bolted separately.
- Length of the C-Rail LP driver: LP = B_i + 4 mm fixed point: LP = B_i

Type S/SX 1050

C-Profile suitable for brackets with small base (slot width 11 – 12 mm). C-Profile dimensions, see page 173, order no. 3934.

■ Inserting the C-Rail in the end connector

C-Rail fixed in the end connector

S/SX Series

- C-Profile and C-Rail are mounted behind the end connectors.
- Strain relief at the fixed point connection and at the driver connection are identical.
- Profile length $L_P \triangleq$ chain width B_k

Types S/SX 0650, 0950

C-Profile suitable for brackets with small base (slot width 11 – 12 mm).

C-Profile dimensions, see page 173, order no. 3931.

Fasten profile with cylindrical screws M6 – DIN 6912.

Types S/SX 1250, 1800

C-Profile suitable for brackets with large base (slot width 16 – 17 mm).

C-Profile dimensions, see page 173, order no. 3926/3932.

Fasten profile with cylindrical screws M10 – DIN 6912.

SZL strain relief devices

- economically priced
- installation easy, fast and without tools
- gentle on cables due to large surface area contact with the cables
- small installation height
- without screws and cable binders
- defined contact pressure exerted by spring clamps
- suitable for common commercially available support rails
- immune to vibration
- long service life for dynamic applications
- can also be used as strain relief in switch cabinets.

Available sizes

Available sizes Dimensions in mn									
Туре	Ident-No.	For Diameter Ø			Height				
			Ø min	Ø max	Н				
SZL 8	24989	> 5.0 - 8.0 mm	16	16	28				
SZL 10	24990	> 8.0 - 10.5 mm	20	20	30				
SZL 14	24991	>10.5 - 14.5 mm	23	26	35				
SZL 18	24992	>14.5 - 18.0 mm	25	32	40				
SZL 22	24993	>18.0 - 22.0 mm	30	36	44				
SZL 27	24994	>22.0 - 27.0 mm	34	39	50				
SZL 32	24995	>27.0 - 32.0 mm	39	44	56				

LIFE-LINE TOTALTRAX

Accessories

Fixing options

1. By clipping into C-Profiles.

2. Byclipping onto cap bar.

3. By pushing into two C-profile bars.

4. By directly screwing

Solutions 3 and 4 make the transmission of large tensile forces possible and are therefore recommended as standard solutions.

Installation of the SZL strain relief device

Subject to change

S/SX Series

LS/LSX Series

Design Guidelines

Saddle-type clamps

- small installation width
- for one cable and two or three cables on top of each other

Strain relief elements for types 1050, 0650 and 0950

Saddle-type clamps with a small base

Saddle-type	clamps with	a small base	D	imensions in mm
Туре	For cable Ø	Height Hsch	Widths Bsch	ltem-No.
Single clamp	s – for one ca	ble		
BA 12	6 - 12 mm	33 - 49	16	16891
BA 14	10 - 14 mm	34 - 50	18	16892
BA 16	12 - 16 mm	36 - 52	20	16893
BA 18	14 - 18 mm	40 - 56	22	16894
BA 22	18 - 22 mm	44 - 60	26	16895
BA 26	22 - 26 mm	49 - 65	30	16896
BA 30	26 - 30 mm	53 - 69	34	16897
BA 34	30 - 34 mm	60 - 76	38	16898
BA 38	34 - 38 mm	72 - 88	42.5	16899
BA 42	38 - 42 mm	85 - 101	46.5	16900
Double clam	ps – for two c	ables on one	top of the oth	ner
BA 12/2	6 - 12 mm	43.5 - 59.5	16	16901
BA 14/2	10 - 14 mm	46.5 - 62.5	18	16902
BA 16/2	12 - 16 mm	52.5 - 68.5	20	16903
BA 18/2	14 - 18 mm	55.5 - 71.5	22	16904
BA 22/2	18 - 22 mm	64 - 80	26	16905
Triple clamps	5 – for three c	ables stacked	on top of eac	ch other
BA 12/3	6 - 12 mm	59.5 - 75.5	16	16906
BA 14/3	10 - 14 mm	78 - 98	18	16907

Opposite sleeves

Opposite sleeves – for uniform distribution of tensile forces

Туре	For cable Ø	b	h	h ₁	R	L	Item-No.
GW 12	6 - 12 mm	12	4	1.0	6	40	16908
GW 14	10 - 14 mm	14	4.5	1.0	7	40	16909
GW 16	12 - 16 mm	16	4.5	1.0	8	40	16910
GW 18	14 - 18 mm	18	4.5	1.0	9	40	16911
GW 22	18 - 22 mm	20	5.5	1.5	11	40	16912
GW 26	22 - 26 mm	24	6.5	1.5	13	40	16913
GW 30	26 - 30 mm	28	7	1.5	15	40	16914
GW 34	30 - 34 mm	32	8	2.0	18	40	16915
GW 38	34 - 38 mm	38	9	2.0	19.5	40	16916
GW 42	38 - 42 mm	42	10	2.0	21.5	40	16917

Double sleeve – for distribution of tensile forces on both sides

Туре	For cable Ø	b	h	h ₁	R	L	Item-No.
DW 12 DW 14 DW 16 DW 18 DW 22	6 - 12 mm 10 - 14 mm 12 - 16 mm 14 - 18 mm 18 - 22 mm	12 14 16 18 22	7 8 9 9	1.0 1.0 1.0 1.0 1.5	6 7 8 10 12	40 40 40 40 40	16862 16863 16864 16865 16875

Other sizes and designs available on request!

Assembly profile bars

suitable for all common commercially available saddle-type clamps with small base (slot width 11 - 12 mm)

Material: Steel Item-No.: 3931

Material: Steel Item-No.: 3934

Opposite sleeve GW

ABELSCHLEP

Strain relief elements for series 1250 and 1800

Saddle-type clamps with a large base

Туре	For cable Ø	Height Hsch	Widths Bsch	М	SW	Item-No.			
Single cla	Single clamps – for one cable								
B 12 B 14 B 16 B 18 B 22 B 26 B 30 B 34 B 38 B 42 B 46 B 50	6 - 12 mm 10 - 14 mm 12 - 16 mm 14 - 18 mm 18 - 22 mm 22 - 26 mm 26 - 30 mm 30 - 34 mm 34 - 38 mm 38 - 42 mm 42 - 46 mm 46 - 50 mm	$\begin{array}{c} 31.5 - 47.5 \\ 33.5 - 49.5 \\ 34.5 - 50.5 \\ 37.5 - 53.5 \\ 41.5 - 57.5 \\ 47.5 - 63.5 \\ 52.5 - 68.5 \\ 64.5 - 80.5 \\ 70.5 - 86.5 \\ 73.5 - 89.5 \\ 80.5 - 96.5 \\ 83.5 - 99.5 \end{array}$	16 18 20 22 30 34 38 42.5 46.5 50.5 54.5	6 6 0 0 0 0 0 0 8 8	10 10 10 10 10 10 10 10 10 10 13 13	16840 16841 16842 16843 16845 16845 16845 16846 16847 16848 16866 16867 16868			
Double cla	amps – for tw	o cables on o	one top of	the	other				
B 12/2 B 14/2 B 16/2 B 18/2 B 22/2 B 26/2 B 30/2 B 34/2 B 38/2 B 38/2 B 42/2	6 - 12 mm 10 - 14 mm 12 - 16 mm 14 - 18 mm 18 - 22 mm 24 - 26 mm 28 - 30 mm 32 - 34 mm 36 - 38 mm 40 - 42 mm	43.5 - 59.5 49.5 - 65.5 55.5 - 71.5 60.5 - 76.5 75.5 - 91.5 83.5 - 99.5 91.5 - 107.5 99.5 - 115.5 107.5 - 123.5 115.5 - 131.5	16 18 20 22 26 30 34 38 42.5 46.5	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	10 10 10 10 10 10 10 10 10	16849 16850 16851 16852 16873 16933 16934 16935 16936			
-	nps – for thre			p of (other			
B 12/3 B 14/3 B 16/3 B 18/3 B 22/3 B 26/3 B 30/3	12 mm 14 mm 16 mm 18 mm 22 mm 26 mm 30 mm	54.5 - 70.5 66.5 - 82.5 71.5 - 87.5 77.5 - 93.5 89.5 - 105.5 101.5 - 117.5 113.5 - 129.5	16 18 20 22 26 30 34	999999	10 10 10 10 10 10 10	16876 16877 16878 16937 16938 16939 16940			

Opposite sleeves

Opposite sleeves – for uniform distribution of tensile forces

Туре	For cable Ø	b	h	h ₁	R	L	Item-No.
GW 12 GW 14 GW 16 GW 22 GW 26 GW 26 GW 30 GW 34 GW 38 GW 42 GW 46 GW 50	6 - 12 mm 10 - 14 mm 12 - 16 mm 14 - 18 mm 18 - 22 mm 22 - 26 mm 26 - 30 mm 30 - 34 mm 34 - 38 mm 38 - 42 mm 42 - 46 mm 46 - 50 mm	12 14 16 18 20 24 28 32 38 42 46 50	4 4.5 4.5 5.5 6.5 7 8 9 10 11 12	1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.0 2.0 2.0	6 7 8 9 11 13 15 18 19.5 21.5 23.5 25.5	40 40 40 40 40 40 40 40 40 40 40	16853 16854 16855 16856 16857 16858 16859 16860 16861 16861 16869 16870

Double sleeve – for distribution of tensile forces on both sides

Туре	For cable Ø	b	h	h ₁	R	L	Item-No.
DW 12 DW 14 DW 16 DW 18 DW 22 DW 26 DW 30 DW 34 DW 38 DW 42	6 - 12 mm 10 - 14 mm 12 - 16 mm 14 - 18 mm 18 - 22 mm 24 - 26 mm 28 - 30 mm 30 - 34 mm 34 - 38 mm 38 - 42 mm	12 14 16 18 22 26 30 34 38 42	7 8 9 10 12 15 15 20	1.0 1.0 1.0 1.5 1.5 2.0 2.0 2.0 4.0	6 7 8 10 12 14 16 18 20 21.5	40 40 40 40 40 40 40 40 40 40	16862 16863 16864 16865 16875 16942 16944 16945 16946 16947

B _{Sch} SW H Sch DW GW

Dimensions in mm

Assembly profile bars

suitable for all common commercially available saddle-type clamps with large base (slot width 16 – 17 mm).

Material:	Aluminium	Steel
Item-No.:	3926	3932

Opposite sleeve

Double sleeve

DW

GW

CONDUFLEX MOBIFLEX

Design Guidelines

LS/LSX Series

S/SX Series

L

L

Other sizes and designs available on request!

Block clamps for series 1050, 0650 to 1800

- for strain relief of hoses
- with clamping bolt(s) and mounting rail nut(s)

Single clamps – one cable

Type BS 0

Type BS 1 – BS 5

Type BS 0 Dimensions in mm										
Туре	For cable Ø	Height H _{Sch}	Width B _{Sch}	Bo M6 – Di Number	lts IN 6912 Length	ltem-No.				
BS 0.06 BS 0.07 BS 0.08 BS 0.09 BS 0.10	6 - 7 mm 7 - 8 mm 8 - 9 mm 9 - 10 mm 10 - 12 mm	26 26 26 26 26	28 28 28 28 28 28	1 1 1 1	35 35 35 35 35	16701 16702 16703 16704 16705				

Other sizes and designs available on request!

Type **BS 0.**___

Assembly profile bars:

Material: Steel Item-No.: 3931

Material: Steel Item-No.: 3934

Туро	For	Height	Width	Во	Item-No.	
Туре	cable Ø	H _{Sch}	Bsch		item-no.	
		USCN	DScn	Number	M6 – DIN 6912	
				number	Length	
BS 1.06	6 - 7 mm	26	34	2	35	16706
BS 1.07	7 - 8 mm	26	34	2	35	16707
BS 1.08	8 - 9 mm	26	34	2	35	16708
BS 1.09	9 - 10 mm	26	34	2	35	16709
BS 1.10	10 - 11 mm	26	34	2	35	16710
BS 1.12	12 - 14 mm	26	34	2	35	16711
BS 2.14	14 - 16 mm	32	40	2	40	16712
BS 2.16	16 - 18 mm	32	40	2	40	16713
BS 2.18	18 - 20 mm	32	40	2	40	16714
BS 3.20	20 - 22 mm	36	48	2	45	16715
BS 3.22	22 - 23 mm	36	48	2	45	16716
BS 3.23	23 - 25 mm	36	48	2	45	16717
BS 3.25	25 - 27 mm	36	48	2	45	16718
BS 3.27	27 - 30 mm	36	48	2	45	16719
BS 3.30	30 - 34 mm	36	48	2	45	16721
BS 4.32	32 - 34 mm	56	69	2	65	16722
BS 4.34	34 - 36 mm	56	69	2	65	16723
BS 4.35	35 - 37 mm	56	69	2	65	16724
BS 4.38	38 - 40 mm	56	69	2	65	16725
BS 4.40	40 - 42 mm	56	69	2	65	16726
BS 4.42	42 - 44 mm	56	69	2	65	16727
BS 5.45	45 - 48 mm	65	85	2	75	16728
BS 5.48	48 - 51 mm	65	85	2	75	16729
BS 5.51	51 - 54 mm	65	85	2	75	16731

Dimensions in mm

Assembly profile bars: **Material: Aluminium**

Item-No.: 3926 Material: Steel

Item-No.: 3932

Other sizes and designs available on request!

Material of the clamping jaws: PP

172

Assembly profile bars for strain relief elements

C-Profile 25 x 10 mm for S/SX 0650/0950

fits all commercial clamps, (slit width 11 - 12 mm), Types BA see page 170.

Item-No. 3931 Steel

Attach profile with M6 – DIN 6912 sockethead cap screws.

C-Rail 25 x 12 mm for LS/LSX 1050, S/SX 0650/0950

Material

fits all commercial clamps (slit width 11 – 12 mm), Types BA see page 170.

Material Item-No. Steel 3934

LS/LSX 1050: is fixed in the end connector; must not be bolted separately. S/SX 0650/0950: Attach profile with M6 – DIN 6912 sockethead cap screws.

C-Rail 34 x 15 mm for S/SX 1250/1800

fits all commercial clamps (slit width 16 – 17 mm), Types B see page 171.

Material Item-No. 3926 Aluminium 3932 Steel

Attach profile with M 10 – DIN 6912 sockethead cap screws.

Design Guidelines

Fax Enquiry Form

Telefax: +49 271 5801-220

From:											
Comp	any:										
Conta	ct:						Department:				
Phone	:				Telefax:			_ Email: _			
							lution for your ap sed on your enqu				
Ple	ase have	an ap	oplicatio	ons enginee	er call for an ap	opointm	ent!				
🗌 Pro	posal foi	r:				E	nquiry number: _				
	Cable ca	rriers	includi	ng enclosed	d designs] Zinc-plated stee	el 🗌 Rust	acid resi	stant stain	less steel
							Steel – specially	/ coated			
							CONDUFLEX		IFLEX		
	Accessor	ries 🗌] Suppc	ort trays 🗌	Guide chann	els 🗌	Electric cables	🗌 Straii	n relief d	evices	
We rea	quire the	follov	wing inf	formation t	o prepare a pr	oposal:					
1.00	Machine	ry dat	ta								
.10	Applicat	-									
.20	Environr	nenta	l condit	ions							
.21	Ambient	t oper	ating te	emperature			_ °C				
.30	Maximu	m ma	chine ti	ravel length	n Ls 🛛 💷		Teri	ms:			
.40	Max. ac	celera	tion/de	celeration			m/s ²				
.50	Travel sp	beed					_ m/s	-	Ls L	<u>s</u>	→ B →
.60	Travel fr	equen	су				times/h				
.70	Installati	on sit	uation	(drawing/o	utline)						
.71	Max. ins	tallati	on heig	ght H			_mm (+ <u>KR</u>	+		ц Т
.72	Max. ins	tallati	on wid [.]	th B			mm				0000000
.73	Installati	on va	riant		EBV						
2.00	Supply c	ables/	/hoses								
	Cable t										
electr.	pneum.	hydr.	Fibre- optic cables	Number of cables	Cable cross section (e.g. 4x6 mm ²)	Ø in mm	Hose diameter at operating pressure in mm	Number of pres- sure oscillations per hour	Weight in kg/m	Minimum- bend radius in mm	Cables with fixed plugs or terminal fittings

3.00 Supplementary information:

Information request

Telefax: +49 271 5801-220

Phone:

Telefax:

Email:

Steel Cable Carriers

Application Examples

Subject to change.

Application examples.

Steel Cable Carriers.

Steel cable carriers on a manipulator for handling crankcase core stackings. Photographs: Hottinger Maschinenbau GmbH

Steel cable carrier on a scissored coil lift. Photographs: SÜDO GmbH

Steel cable carriers with aluminium cover system on a radio telescope. Photographs: Max-Planck-Institut für Radioastronomie

Steel cable carriers with plastic cable carriers for separating the cables on a ZEUS detector. Photograph: Deutsches Elektronen-Synchrotron, Hamburg

LIFE-LINE TOTALTRAX

Steel Cable Carriers.

Steel cable carriers on a movable roof construction. Photographs: Lindenschmidt KG

Steel cable carriers with steel band cover on a shredding system. Photographs: Lindenschmidt KG

Steel cable carriers on a drilling system. Photograph: Prime Drilling GmbH

Steel cable carriers on telescopic lifts.

LIFE-LINE Totaltrax

Accessories

Application Examples

Steel Cable Carriers.

Steel cable carriers on a paper machine. Photographs: Voith Paper Technology Center GmbH

Steel cable carriers on a profile straightening machine. Photographs: Sondermaschinenbau Wildau GmbH & Co. KG

Steel cable carriers with load-bearing bolts. Photograph: Rottler GmbH

Steel cable carriers on a laser cutting machine. Photographs: Meyer Werft GmbH

183

Steel Cable Carriers.

Steel cable carriers with hole stays.

CONDUFLEX cable carrier tubes on a roll grinding machine. Photograph: Waldrich Siegen Werkzeugmaschinen GmbH

Steel cable carriers on a gantry milling machine. Photograph: Waldrich Siegen Werkzeugmaschinen GmbH

Steel cable carriers with LIFE-LINE Safety Cables on transport frame.

Steel cable carriers with hydraulic hoses.

Steel cable carriers with hole stays.

Steel Cable Carriers.

Steel cable carriers with LIFE-LINE Safety Cables.

Steel cable carriers in 4-band version.

Steel cable carriers on transport frame.

Steel cable carriers on transport frame.

Steel cable carrier with load-bearing bolts.

Steel cable carriers in 4-band version.

CONDUFLEX

Design Guidelines

LS/LSX Series

S/SX Series

the power to innovate

Cable and Hose Carrier Systems

Cable carriers made of Steel and Plastic QUANTUM Cable and hose carrier system PROTUM Cable and hose carrier system PROFILE Cable and hose carrier system ROBOTRAX Cable and hose carrier system LIFE-LINE Cable systems TOTALTRAX Turn-Key Systems

Guideway Protection Systems

Telescopic covers Link apron covers

- Way wipers Conical spring covers
- Bellows

Conveyor Systems Hinged belt conveyors Scraper conveyors Belt conveyors

KABELSCHLEPP GmbH

Marienborner Str. 75 D-57074 Siegen Fon: +49 271 5801-0 Fax: +49 271 5801-220 E-Mail: info@kabelschlepp.de www.kabelschlepp.de

KABELSCHLEPP worldwide

For contacts, adresses and much more, visit our web site at www.kabelschlepp.de